• Home
  • Über uns
  • Publizieren
  • Katalog
  • Newsletter
  • Hilfe
  • Account
  • Kontakt / Impressum
Dissertation - Publikationsreihe - Tagungsband - Fachbuch - Vorlesungsskript/Lehrbuch - Zeitschrift - CD-/DVD-ROM - Online Publikation - Open Access
Suche im Gesamtkatalog - Rezensionen - Lizenzen
Newsletter für Autoren und Herausgeber - Neuerscheinungsservice - Archiv
Warenkorb ansehen
Katalog : Details

Udo Hartel

Numerical Simulation of Laser Beam Welding for Aluminum-Copper Dissimilar Material Connections

VorderseiteRückseite
 
ISBN:978-3-8440-6184-0
Reihe:Berichte des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus-Senftenberg
Herausgeber: Univ.-Prof. Dr.-Ing. habil. Vesselin Michailov
Cottbus
Band:12
Schlagwörter:Al; Cu; laser beam welding; FEM; thermo-mechanical simulation; dissimilar materials; material modeling; heat source modeling; microstructure
Publikationsart:Dissertation
Sprache:Englisch
Seiten:180 Seiten
Abbildungen:143 Abbildungen
Gewicht:266 g
Format:21 x 14,8 cm
Bindung:Paperback
Preis:48,80 € / 61,10 SFr
Erscheinungsdatum:Oktober 2018
Kaufen:
  » zzgl. Versandkosten
Weiterempfehlung:Sie möchten diesen Titel weiterempfehlen?
Rezensionsexemplar:Hier können Sie ein Rezensionsexemplar bestellen.
Verlinken:Sie möchten diese Seite verlinken? Hier klicken.
Export Zitat:
Text
BibTex
RIS
Zusammenfassung:This thesis deals with the thermo-mechanical simulation of laser beam welding for aluminum-copper joints, using the finite element method. Main focus lies on computational approaches to model the temperature field distribution and to describe the structural material behavior of pure aluminum and copper. First of all the material behavior for the corresponding base materials is validated. This is followed by approaches for efficient heat source calibration and material modeling of heterogeneous aluminum-copper joints. Numerical computations are supported by experimental studies. To compute welding distortions, two different approaches are presented. Initially a generic elasto-plastic material model formulation is analyzed. Material parameters for the generic approach are calibrated based on tensile shear testing of overlap joint specimens. Next a novel approach is introduced with respect to common state of the art thermo-mechanical welding simulation, which tries to estimate effective material properties. The basic idea of this concept is to model the material behavior by incorporating all relevant microscale details. The macroscopic or effective material response is obtained by homogenization, based on representative volume elements or virtual microstructures. These representative volume elements include all necessary micro-heterogeneities and different microstructures. On the example of mild mixing aluminum-copper lap joint weldings, multiple volume elements are reconstructed from realistic microstructures at various positions within the weld seam. Derived effective material properties are transferred to thermo-mechanical welding simulation and have been compared to experimental results.