• Home
  • Über uns
  • Publizieren
  • Katalog
  • Newsletter
  • Hilfe
  • Account
  • Kontakt / Impressum
Dissertation - Publikationsreihe - Tagungsband - Fachbuch - Vorlesungsskript/Lehrbuch - Zeitschrift - CD-/DVD-ROM - Online Publikation
Suche im Gesamtkatalog - Rezensionen - Lizenzen
Newsletter für Autoren und Herausgeber - Neuerscheinungsservice - Archiv
Warenkorb ansehen
Katalog : Details

Robin Schubert

Integrated Bayesian Object and Situation Assessment for Lane Change Assistance

ISBN:978-3-8440-0322-2
Reihe:Forschungsberichte der Professur Nachrichtentechnik
Herausgeber: Prof. Dr.-Ing. Gerd Wanielik
Chemnitz
Band:7
Schlagwörter:Advanced Driver Assistance Systems; Lane Change Assistant; Data Fusion; Multi Object Tracking; Situation Assessment; Bayesian Networks; Decision Networks; Unscented Kalman Filter; Adaptive Likelihood Nodes; Meta Model Filter
Publikationsart:Dissertation
Sprache:Englisch
Seiten:224 Seiten
Abbildungen:64 Abbildungen
Gewicht:333 g
Format:21 x 14,8 cm
Bindung:Paperback
Preis:49,80 € / 99,60 SFr
Erscheinungsdatum:August 2011
Kaufen:
  » zzgl. Versandkosten
Download:

Verfügbare Online-Dokumente zu diesem Titel:

Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.

Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.

 
 DokumentAbstract / Kurzzusammenfassung 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei - 64 kB (65098 Byte) 
 AktionDownload der Datei - 64 kB (65098 Byte) 
     
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten37,35 EUR 
 AktionZahlungspflichtig kaufen und anzeigen der Datei - 1,9 MB (1953709 Byte) 
 AktionZahlungspflichtig kaufen und download der Datei - 1,9 MB (1953709 Byte) 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei - 110 kB (112504 Byte) 
 AktionDownload der Datei - 110 kB (112504 Byte) 
     

Benutzereinstellungen für registrierte Online-Kunden

Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.

Benutzer:  Nicht angemeldet
Aktionen:  Anmelden/Registrieren
 Passwort vergessen?
Weiterempfehlung:Sie möchten diesen Titel weiterempfehlen?
RezensionsexemplarHier können Sie ein Rezensionsexemplar bestellen.
VerlinkenSie möchten diese Seite verlinken? Hier klicken.
ZusammenfassungIn-vehicle advanced driver assistance systems are based on the perception and interpretation of the vehicle's environment. These tasks are often based on probabilistic object and situation assessment algorithms such as Bayes filters or Bayesian networks. However, though these techniques are subject to intensive research, the interface between them has not yet been sufficiently addressed.
Thus, the main research objective of this work is to provide a generic, bidirectional, probabilistic interface between object and situation assessment in order to allow a unified view on these tasks. For that purpose, it is firstly shown that by a new technique called adaptive likelihood nodes, uncertainties from the probabilistic perception of the vehicle's surrounding can be directly entered into a Bayesian network in order to influence the situation assessment. In addition, it is investigated how uncertain knowledge about the current situation can be exploited in order to support the tracking performance. For that, an extension of the interacting multiple model filter is proposed which is called the meta model filter. This technique models possible maneuvers of vehicles using a Bayesian network in order to adaptively adjust the transition probabilities of the interacting multiple model filter according to the current situation. With this approach, a situation-dependent multiple model filtering can be achieved.
The benefits of these theoretical contributions are demonstrated on the example of an advanced driver assistance system which supports lane change maneuvers on highways. The aim of this lane change assistant is to sense the surrounding of the host vehicle in order to assess the current traffic situation and automatically determine optimal lane change maneuver decisions. This work describes all data fusion components of this system including probabilistic filtering, situation assessment, and decision taking. It is shown how by using both of the newly proposed concepts – adaptive likelihood nodes and the meta model filter – a unified Bayesian data processing chain from the sensors to the final maneuver decision can be achieved. Finally, the performance of the lane change assistant and the benefits of the proposed techniques are analyzed using both simulated and empirical data.