Carmen Maria KraheKI-gestützte produktionsgerechte ProduktentwicklungAutomatisierte Wissensextraktion aus vorhandenen Produktgenerationen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISBN: | 978-3-8440-8953-0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reihe: | Forschungsberichte aus dem wbk, Institut für Produktionstechnik, Karlsruher Institut für Technologie (KIT) Herausgeber: Prof. Dr.-Ing. Jürgen Fleischer, Prof. Dr.-Ing. Gisela Lanza und Prof. Dr.-Ing. habil. Volker Schulze Karlsruhe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Band: | 265 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schlagwörter: | Maschinelles Lernen; Produkt-Produktions-Codesign; Design for Manufacturing; produktionsgerechte Produktentwicklung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Publikationsart: | Dissertation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sprache: | Deutsch | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seiten: | 298 Seiten | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abbildungen: | 110 Abbildungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gewicht: | 389 g | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format: | 21 x 14,8 cm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bindung: | Paperback | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Preis: | 49,80 € / 62,30 SFr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Erscheinungsdatum: | Februar 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kaufen: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Download: | Verfügbare Online-Dokumente zu diesem Titel: Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien. Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Benutzereinstellungen für registrierte Online-Kunden Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weiterempfehlung: | Sie möchten diesen Titel weiterempfehlen? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rezensionsexemplar: | Hier können Sie ein Rezensionsexemplar bestellen. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verlinken: | Sie möchten diese Seite verlinken? Hier klicken. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Export Zitat: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Zusammenfassung: | Produzierende Unternehmen stehen heutzutage vor der Herausforderung, aufgrund des starken globalen Wettbewerbsdrucks in immer kürzerer Zeit dennoch innovative Produkte zu einem möglichst günstigen Preis auf den Markt zu bringen. Insbesondere für die Produktentwicklung entsteht dadurch ein enormer Zeit- und Kostendruck, allerdings ist die sogenannte Time-to-Market entscheidend für den Markterfolg. Durch die Wiederverwendung von bereits existierenden Produktmodellen sowie dem darin enthaltenen Wissen kann diese Entwicklungszeit deutlich reduziert werden. Jedoch wird diese Wissensbasis aufgrund ihrer impliziten Natur häufig noch nicht systematisch genutzt. Durch die zunehmende Nutzung digitaler Tools und die damit einhergehende wachsende Datenbasis ergibt sich über datengetriebene Ansätze jedoch die Möglichkeit, dieses (implizite) Wissen zu extrahieren, zu formalisieren und nutzbar zu machen. Ziel dieser Dissertation ist die Entwicklung einer Methode zur automatisierten Extraktion von implizitem Wissen in Form von Features und Mustern aus vorhandenen Produktmodellen mit Hilfe von Verfahren des Maschinellen Lernens. Anhand von erlernten Mustern wird für einen gegebenen Konstruktionszustand zunächst der Folgezustand prädiziert, für den anschließend die ähnlichsten bereits existierenden finalen Modelle aufgezeigt und die produktionsrelevanten Produkteigenschaften bewertet werden. Die Ergebnisse auf Basis eines industriellen Datensatzes zeigen, dass bereits für anfängliche Konstruktionszustände ähnliche Produktmodelle identifiziert werden können, wodurch die Wiederverwendung von Wissen gefördert sowie die Generierung von Dubletten reduziert werden. Darüber hinaus können bereits frühzeitig Hinweise auf mögliche Probleme bezüglich der späteren Produzierbarkeit gegeben werden. |