Header

Shop : Details

Shop
Details
58,80 €
ISBN 978-3-8440-9484-8
Paperback
182 Seiten
245 g
21 x 14,8 cm
Englisch
Dissertation
Mai 2024
Tobias Peschke
Robust Adaptive and Anticipative Tracking Model Predictive Control
with Application to Self-Propelled Work Machines
Most control applications need to operate under constraints regarding system inputs, states and outputs. Model Predictive Control (MPC) is an advanced control method which allows for an easy integration of input, state and output constraints into the control algorithm. However, closed-loop system properties as stability and recursive feasibility cannot be guaranteed if the internal model deviates from the true system. Robust MPC methods address this issue by explicitly considering model uncertainty inside the control algorithm. However, control performance may degrade significantly due to an overly conservative consideration of the model uncertainty.

This thesis presents methods how to incorporate adaptive and anticipative knowledge into robust MPC algorithms. It is shown how different levels of anticipative knowledge increase control performance. The computationally efficient integration of anticipative knowledge into robust tube-based MPC algorithms enables the use in real-world applications.

Many control applications are formulated as a tracking problem whereas most robust MPC schemes only consider the regulation problem. In this thesis, robust tracking MPC algorithms are presented which incorporate changing tracking targets in an effective way. Moreover, adaptive control methods are included into a robust tube-based tracking MPC algorithm. The advantages are highlighted by a simulation example for a self-propelled work machine.

Anticipative knowledge is especially useful for throughput control of self-propelled work machines. Anticipative MPC algorithms for self-propelled work machines are presented which consider constraints on ride comfort and engine load. The effectiveness of the approach is highlighted by simulation and field test data.
Schlagwörter: Model Predictive Control; Self-Propelled Work Machines; Anticipative Tracking; Adaptive Tracking
Forschungsberichte aus dem Lehrstuhl für Elektromobilität
Herausgegeben von Prof. Dr.-Ing. Daniel Görges, Kaiserslautern
Band 7
Verfügbare Online-Dokumente zu diesem Titel
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten44,10 € 
 AktionDownloadZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownloadDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Teilen
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media