Header

Shop : Details

Shop
Details
44,10 €
ISBN 978-3-8440-9875-4
158 Seiten
73 Abbildungen
Deutsch
Dissertation
Februar 2025
eBook (PDF)
Manuel Sebastian Müller
Automatische Beurteilung situationsbezogener Risiken von mobilen Industrierobotern
Mobile Industrieroboter werden wegen ihrer Flexibilität immer wichtiger. Sie können in komplexen und unstrukturierten Umgebungen eigenständig ihren Weg zum Ziel finden. Die Herausforderung liegt in der Gewährleistung der Sicherheit (Safety). Klassische Risikobeurteilungsansätze treffen zur Entwurfszeit pauschale Worst-Case-Annahmen. Die verwendeten Modelle sind oft vage und unsicherheitsbehaftet, da konkrete Situationsinformationen fehlen. Dies macht die Systeme zwar sicher, aber unzuverlässig und ineffizient, was zu umständlichen Trajektorien und Standzeiten führt.
Besser wäre eine situationsbezogene Risikobeurteilung, bei der die Modelle System und Umgebung stets zutreffend beschreiben. Der mobile Roboter könnte dann fallspezifisch zwischen Nutzen und Risiko abwägen. Ziel ist es, situationsbezogen potentielle Schadensszenarien zu identifizieren und deren Eintrittswahrscheinlichkeiten abzuschätzen.
Die vorgestellte Methodik adaptiert das Konzept des digitalen Zwillings für die Risikoschätzung und erweitert es um Situation Awareness. Aus kleinen Metamodellen wird ein Gesamtmodell zusammengesetzt. Abweichungen von der erwarteten Vorhersagequalität werden erkannt und eingegrenzt. Multi Agent Adversarial Reinforcement Learning deckt Schadensszenarien auf, wobei Agenten-Stereotypen systemtheoretisch ausgewählt werden. Eine Kombination aus Ereignisbaum und Spielgraphen schließt auf das Risiko.
Die Evaluation erfolgt anhand dreier Anwendungsfälle: Beherrschung von Teilausfällen, Anomalien und neuen Umgebungen. Die Methode verbessert die Vorhersagequalität bei 94% weniger Trainingsdaten. Die situative Risikoschätzung halbiert den mittleren Schätzfehler von 18,3% auf 8,6%. Bis zu 80% der Stillstandkosten werden vermieden. Das Verfahren ist interpretierbar und übertragbar.
Schlagwörter: situationsbezogene Risikobeurteilung; Reinforcement Learning; digitaler Zwilling
IAS-Forschungsberichte
Herausgegeben von Prof. Dr.-Ing. Dr. h. c. Michael Weyrich, Stuttgart
Band 2025,4
Weitere Formate
Print-Version: 978-3-8440-9780-1
DOI 10.2370/9783844098754
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten44,10 € 
 AktionDownloadZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownloadDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media