Header

Shop : Details

Shop
Details
58,80 €
ISBN 978-3-8440-9765-8
Paperback
172 Seiten
38 Abbildungen
225 g
21 x 14,8 cm
Englisch
Dissertation
Januar 2025
Simon Stock
Physics-informed Machine Learning for Virtual Inertia Provision from Distribution Power Systems
This thesis develops a framework that enables the provision of Virtual Inertia from power distribution systems. In this way, distributed renewables energies can be utilized to support the overall system frequency. Physics-informed Machine Learning techniques are developed and applied inside this framework. Namely, the Bayesian Physics-informed Neural Network and the Physics-informed Actor Critic.
Schlagwörter: Power Systems; Renewable Energy sources; Machine Learning
Weitere Formate
Elektronische Publikation (PDF): 978-3-8440-9860-0
Export bibliographischer Daten
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media