Header

Shop : Details

Shop
Details
58,80 €
ISBN 978-3-8440-9400-8
Paperback
162 Seiten
50 Abbildungen
220 g
21 x 14,8 cm
Deutsch
Dissertation
Februar 2024
Kerstin Palm
Einsatzindividuelles, intelligentes Energiemanagement im hybriden Nutzfahrzeug
Hybridfahrzeuge können insbesondere im Schwerlastverkehr dazu beitragen, die seitens der EU vorgegebenen Ziele zur CO2-Flottenreduktion zu erreichen. Um das Potential der Hybridantriebe möglichst weit ausnutzen zu können, sind geeignete, intelligente Energiemanagementstrategien erforderlich. In der Wissenschaft gibt es hierfür erste Ansätze, die auf Maschinellen Lernverfahren beruhen. Neben der Wahl des Algorithmus und seiner Parametrierung haben die verwendeten Trainingsdaten einen wesentlichen Einfluss auf die erlernten Strategien. In den bisher veröffentlichten Ansätzen werden einzelne aufgezeichnete Messfahrten, deren Repräsentativität zu hinterfragen ist, oder standardisierte Fahrprofile verwendet, die wiederum sehr allgemein gehalten sind und vom tatsächlichen Fahrzeugeinsatz abweichen können.
In der vorliegenden Arbeit wird untersucht, ob einsatzindividuelle, synthetische Fahrprofile in Simulationsmodellen für das Training solcher Maschineller Lernverfahren zum Energiemanagement geeignet sind und welche Vorteile sich gegenüber einem Training mit standardisierten Profilen ergeben. Es werden zwei Varianten hinsichtlich der vorhandenen Ladeinfrastruktur betrachtet. Das Training erfolgt einerseits mit den einsatzindividuellen und andererseits mit standardisierten Profilen. Als weitere Varianten werden mittels der Dynamischen Programmierung global optimierte Lösungen sowie daraus abgeleitete regelbasierte Steuerstrategien betrachtet. Es zeigt sich, dass die einsatzindividuell trainierten Reinforcement Learning-Agenten zum Energiemanagement sowohl hinsichtlich des Kraftstoffverbrauchs wie auch der Betriebskosten deutlich bessere Ergebnisse liefern als die standardisiert trainierten. Von der optimierten Lösung weichen die einsatzindividuellen Agenten um etwa 2 % ab.
Schlagwörter: Energiemanagement; KI; Maschinelles Lernen; Hybridfahrzeug; Simulation
Forschungsberichte aus dem Institut für mobile Maschinen und Nutzfahrzeuge
Herausgegeben von Freundes- und Förderkreis des Instituts für mobile Maschinen und Nutzfahrzeuge e.V., Braunschweig
Verfügbare Online-Dokumente zu diesem Titel
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten44,10 € 
 AktionZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media