Header

Shop : Details

Shop
Details
45,80 €
ISBN 978-3-8440-9268-4
Paperback
152 Seiten
74 Abbildungen
225 g
21 x 14,8 cm
Englisch
Dissertation
November 2023
Seyed Ruhollah Dokhanchi
Towards Digital Shadow in Plasma Spraying
Atmospheric Plasma Spraying (APS) is a versatile coating technology with diverse functional features. Deposition efficiency (DE) is a major performance measure in APS, influenced by various factors. Due to intricate interdependencies of these factors, enhancing DE has always been a challenging task in the process development of APS. Hence, employing a variety of computer-aided methods is essential to understand and manage these correlations. The concept of the so-called Digital Shadow combines domain-specific models with data-driven techniques of Artificial Intelligence (AI), inferred by autonomous agents to create a sufficiently accurate image of the production process including all relevant data. This dissertation is devoted to the development of the primary steps towards a Digital Shadow in APS with the ultimate goal of improving the process efficiency.

Modern AI methods, namely Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS), were used in this work to predict DE. To tackle the problem of insufficient data for training the aforementioned AI models two approaches were pursued: 1) A method was developed for in situ determination of spatially resolved deposition efficiencies on the substrate, namely Local Deposition Efficiency (LDE). By using LDE, sufficient amount of data for learning algorithms could be generated, while providing that much data for ex situ measurements of global DE and their corresponding particle properties would be impractical. 2) Simulation data for the in-flight particle properties were generated by using the simulation models of the plasma jet already developed at IOT. The combination of these two strategies provided the aggregated and purpose driven data sets required for a Digital Shadow in APS.
Schlagwörter: thermal spraying; atmospheric plasma spraying (APS); deposition efficiency (DE); digital shadow; digital twin; expert system; artificial intelligence (AI); machine learning (ML); adaptive neuro-fuzzy inference system (ANFIS); support vector machine (SVM)
Schriftenreihe Oberflächentechnik
Herausgegeben von Prof. Dr.-Ing. K. Bobzin, Aachen
Band 74
Verfügbare Online-Dokumente zu diesem Titel
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten34,35 € 
 AktionZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media