Header

Shop : Details

Shop
Details
49,80 €
ISBN 978-3-8440-8945-5
Paperback
272 Seiten
95 Abbildungen
356 g
21 x 14,8 cm
Deutsch
Dissertation
Februar 2023
Martin Schmidt
Maschinelle Beurteilung agronomischer Arbeitsqualität als Grundlage für die Verhaltensgenerierung automatisierter Landmaschinen
Hochautomatisierte Landmaschinen sind keine Fiktion mehr und werden in den nächsten Jahren marktreif verfügbar sein. Solche Landmaschinen sind im Betrieb nicht mehr auf den Menschen angewiesen und werden eigenständig Entscheidungen treffen und umsetzen. Betrachtet man das Aufgabenspektrum einer maschinenführenden Person bei der Ausführung der Feldarbeit, so lässt sich die Gesamtaufgabe in die Teilaufgaben „Fahren“ und „Steuern und Überwachen des Arbeitsprozesses“ unterteilen. In der vorliegenden Arbeit wird exemplarisch am ausgewählten Verfahren Grubbern ein Ansatz für die Automatisierung der angesprochenen Teilaufgabe „Steuern und Überwachen des Arbeitsprozesses“ erarbeitet. Durch Feldtests wird dessen Relevanz nachgewiesen.

Der zentrale Punkt der Automatisierung der angesprochenen Teilaufgabe ist die agronomische Arbeitsqualität. Diese wird für das ausgewählte Verfahren zuerst systematisch untersucht. Auf dieser Grundlage wird eine für die vorliegende Arbeit gültige Definition des Begriffs „Arbeitsqualität“ vorgenommen. Hierbei handelt es sich um einen vom Menschen zu definierenden Bodenbedeckungsgrad von Ernteresten oder sonstiger Biomasse auf dem Feld.

Ausgehend von einer systematischen Analyse der Aufgaben der maschinenführenden Person bei der Feldarbeit wird ein Modell zur Beschreibung der Gesamtarbeitsaufgabe erarbeitet. Darauf basierend wird ein technisches Grundgerüst für die Automatisierung der Teilaufgabe „Steuern und Überwachen des Arbeitsprozesses“ erarbeitet.

Das technische Grundgerüst lässt sich weitergehend in eine zu erarbeitende Sensorik und ein zu erarbeitendes Regelungskonzept unterteilen. Für die zu erarbeitende Sensorik zur Messung des Bedeckungsgrades wird ein bildgebendes Verfahren mit einer monokularen Kamera ausgewählt. Hierbei werden Methoden des maschinellen Sehens und des maschinellen Lernens untersucht und miteinander verglichen. Ein Deep Learning Ansatz erweist sich in Tests als der geeignetste Ansatz. Zusätzlich wird noch ein einfaches Klassifizierungsverfahren zur Erkennung signifikanter Luftstaubkonzentrationen im Bild entwickelt, basierend auf Deep Learning. Im regelungstechnischen Teil wird das erarbeitete technische Grundgerüst weiter verfeinert und ein kaskadiertes Regelungskonstrukt entwickelt. Hierbei wird auf der Grundlage von Feldversuchen zur Charakterisierung der Regelstrecke ein Split-Range-Ansatz erarbeitet. Der Ansatz wird auf Stabilität untersucht und implementiert. Da zur Umsetzung des erarbeiteten technischen Grundgerüsts mehr Funktionen notwendig sind als nur der reine Regelkreis, beispielsweise für den Umgang mit signifikanten Konzentrationen von Luftstaub, wird ein gesamtheitliches Konzept zur „Verhaltensgenerierung“ entwickelt.

Die entwickelten Deep Learning Modelle und das Konzept zur Verhaltensgenerierung werden abschließend in umfangreichen Feldversuchen auf verschiedenen Feldern mit unterschiedlichen Pflanzenarten erfolgreich getestet und verifiziert.
Schlagwörter: Autonomie; Automatisierung; Landtechnik; Künstliche Intelligenz; Regelungstechnik; Verfahrenstechnik in der Pflanzenproduktion; Agonomische Arbeitsqualität
Verfügbare Online-Dokumente zu diesem Titel
DOI 10.2370/9783844089455
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten37,35 € 
 AktionZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media