Header

Shop : Details

Shop
Details
49,80 €
ISBN 978-3-8440-4551-2
Paperback
320 Seiten
48 Abbildungen
419 g
21 x 14,8 cm
Deutsch
Dissertation
Juli 2016
Desiree Ingrid Baumann
Untersuchung von chemometrischen Methoden zur Erstellung und Validierung von QSAR-Modellen
In der vorliegenden Arbeit wurden mathematische Methoden zur Erstellung und Validierung von QSAR-Modellen untersucht. Hierbei wurde die Methode der Doppelten Kreuzvalidierung (die zur simultanen Modellselektion und Modellbewertung eingesetzt wird) systematisch untersucht, da die Validität dieser Methode häufig in der Literatur angezweifelt wird. Mithilfe umfangreicher Simulationsstudien und realer Datensätze konnte gezeigt werden, dass die DCV selbst unter Modellunsicherheit das Potential hat, den Vorhersagefehler der Modelle ohne einen statistisch nachweisbaren systematischen Fehler zu schätzen. Da das Potential der DCV von frei wählbaren Parametern wie z.B. der Testdatensatzgröße abhängt, wurde der Einfluss der Parameterauswahl auf die Leistungsfähigkeit der DCV analysiert. Letztlich konnte ein umfassendes Regelwerk entwickelt werden, das dem Anwender ermöglicht, die Parameter der DCV derart auszuwählen, dass eine hohe Modellqualität resultiert und zugleich eine zuverlässige Modellbewertung möglich ist.

Ferner wurde in der vorliegenden Arbeit der R2test, der als relatives Gütekriterium zur Modellbewertung bei QSAR-Modellen eingesetzt wird, untersucht, da seine komplexen Eigenschaften bisher noch weitestgehend unverstanden sind. Im Rahmen dieser Arbeit gelang es erstmalig, den systematischen Fehler des R2test in Abhängigkeit von der Testdatensatzgröße zu erklären, indem die zugrundeliegende Verteilungsdichte und der Erwartungswert des R2test unter einigen Annahmen hergeleitet wurden. Um den systematischen Fehler zu korrigieren, wurde im Rahmen der Arbeit ein neuer Ansatz entwickelt, der häufig den bekannten Schätzverfahren (die auf etablierten Gütekriterien basieren) deutlich überlegen ist, da er selbst für sehr kleine Testdatensätze realistische Schätzungen der Vorhersagekraft liefert. Die Vorteile des neu entwickelten Ansatzes wurden mit einem mathematischen Beweis dargelegt und konnten sowohl anhand umfangreicher Simulationsstudien als auch anhand realer Daten belegt werden.
Schlagwörter: Validierung; QSAR; Vorhersagefehler; Kreuzvalidierung; lineares Modell; Modellerstellung; Modelloptimierung; Güteparameter; Validierungskonzepte; DCV; Regressionsfall
Verfügbare Online-Dokumente zu diesem Titel
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten37,35 € 
 AktionZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media