Header

Shop : Details

Shop
Details
978-3-8440-1857-8
39,80 €
ISBN 978-3-8440-1857-8
Paperback
86 Seiten
29 Abbildungen
126 g
24,0 x 17,0 cm
Englisch
Dissertation
Mai 2013
Jingming Hou
Robust Numerical Methods for Shallow Water Flows and Advective Transport Simulation on Unstructured Grids
The two-dimensional (2D) shallow water equations (SWEs) are extensively used for hydrodynamic simulations in hydraulic and environmental engineering. The transport process inside shallow water, such as the transport of contaminant and sediment, can be modeled by solving the transport equation numerically. When solving the advective transport equation and SWEs, second order numerical schemes are widely used to reduce numerical diffusion caused by first order schemes. However, numerical oscillations may be induced by second order schemes without proper limiters. Second order total variation diminishing based flux limiting schemes (TVD schemes) are able to get rid of such numerical oscillations. In this cumulative dissertation, second order TVD schemes derived on 1D grids are extended to 2D unstructured grids, within the framework of the cell-centered finite volume method, to comfort to complex geometry. Moreover, an efficient treatment for slope source terms of SWEs and a robust approach handling wetting and drying are devised. This dissertation is on the basis of four papers in peer reviewed international journals and four conference contributions.

To extend second order TVD schemes to 2D unstructured grids, three methods are developed step by step. The first method adopts the TVD schemes which take the variation of cell size into account, for unstructured grids. In the second method, the first one is improved by applying more dominant upwind information perpendicular to the considered face. As a result, both the accuracy and efficiency are higher than the first one. Since an approximation is used, the accuracy of the second method is affected. By extrapolating the values of variables at the midpoint of the considered face, the third TVD method can produce more accurate results than the first two methods. The amelioration of each method in simulating linear advection is illustrated by the test cases in the corresponding papers and by a new test case in this dissertation. In addition, the third method is also employed to solve the SWEs.

A new treatment for the slope source terms of the SWEs is devised for unstructured grids. This treatment together with the hydrostatic non-negative water depth reconstruction method and the HLLC approximate Riemann solver, constitute a well-balanced scheme, which satisfies the conservation property.

In the case with the occurrence of wet-dry fronts, the very small water depths near wet-dry fronts may lead to unphysical high velocities and in turn to negative water depths. To preserve numerical stability, a new adaptive approach is proposed, by means of switching to first order scheme in such sensitive areas.

In this dissertation, the third method extending TVD schemes to 2D unstructured grids incorporated with the well-balanced scheme and the adaptive approach are proposed finally to simulate shallow water flows and advective transport inside. This model is able to get rid of numerical oscillations, to preserve the C-property and mass conservation, to achieve good convergence to steady state, to capture discontinuous flows and to handle complex flows involving wetting and drying over uneven beds, on unstructured grids with poor connectivity, in an accurate, efficient and robust way. These capabilities are verified against analytical solutions, numerical results of alternative models and experimental and field data.
Schlagwörter: total variation disminishing; unstructured grids; advection simulation; transport; shallow water equations; second order reconstruction; well-balanced scheme; wet-dry fronts; slope source terms; cell-centered finite volume method; uneven bed
Heftreihe des Instituts für Bauingenieurwesen / Book Series of the Department of Civil Engineering, Technische Universität Berlin
Herausgegeben von Prof. Dr.-Ing. Matthias Barjenbruch, Prof. Dr.-Ing. Karsten Geißler, Prof. Dr.-Ing. Reinhard Hinkelmann, Prof. Dr.-Ing. Wolfgang Huhnt, Prof. Dr.-Ing. Yuri Petryna, Prof. Dr.-Ing. Frank Rackwitz, Prof. Dr. sc. techn. Mike Schlaich, Prof. Dr.-Ing. Volker Schmid, Prof. Dr.-Ing. Matthias Sundermeier und Prof. Dr.-Ing. Frank U. Vogdt, Berlin
Band 13
Verfügbare Online-Dokumente zu diesem Titel
DOI 10.2370/9783844018578
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten29,85 € 
 AktionZahlungspflichtig kaufen und anzeigen der Datei 
 AktionZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei 
 AktionDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media