• Home
  • Über uns
  • Publizieren
  • Katalog
  • Newsletter
  • Hilfe
  • Account
  • Kontakt / Impressum
Dissertation - Publikationsreihe - Tagungsband - Fachbuch - Vorlesungsskript/Lehrbuch - Zeitschrift - CD-/DVD-ROM - Online Publikation
Suche im Gesamtkatalog - Rezensionen - Lizenzen
Newsletter für Autoren und Herausgeber - Neuerscheinungsservice - Archiv
Warenkorb ansehen
Katalog : Details

Florian Martin

WEB-Spline Approximation and Collocation for Singular and Time-Dependent Problems

VorderseiteRückseite
 
ISBN:978-3-8440-5428-6
Reihe:Mathematik
Schlagwörter:Adaptive Refinement; Boundary Value Problem; B-Spline; Collocation; Finite Element Method; Hierarchical Basis; Linear Elasticity; Quasi-Interpolant; Singular Function; Spline Approximation; Time-Dependent Problem; Tsunami; WEB-Spline
Publikationsart:Dissertation
Sprache:Englisch
Seiten:188 Seiten
Abbildungen:68 Abbildungen
Gewicht:165 g
Format:21 x 14,8 cm
Bindung:Paperback
Preis:48,80 € / 61,10 SFr
Erscheinungsdatum:August 2017
Kaufen:
  » zzgl. Versandkosten
Download:

Verfügbare Online-Dokumente zu diesem Titel:

Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.

Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.

 
 DokumentAbstract / Kurzzusammenfassung 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei - 42 kB (43488 Byte) 
 AktionDownload der Datei - 42 kB (43488 Byte) 
     
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten12,20 EUR 
 AktionZahlungspflichtig kaufen und anzeigen der Datei - 7,6 MB (7987849 Byte) 
 AktionZahlungspflichtig kaufen und download der Datei - 7,6 MB (7987849 Byte) 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei - 164 kB (168103 Byte) 
 AktionDownload der Datei - 164 kB (168103 Byte) 
     

Benutzereinstellungen für registrierte Online-Kunden

Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.

Benutzer:  Nicht angemeldet
Aktionen:  Anmelden/Registrieren
 Passwort vergessen?
Weiterempfehlung:Sie möchten diesen Titel weiterempfehlen?
RezensionsexemplarHier können Sie ein Rezensionsexemplar bestellen.
VerlinkenSie möchten diese Seite verlinken? Hier klicken.
ZusammenfassungDie Anwendung eines Finite-Elemente-Verfahrens auf die meisten Bauteile, die in der heutigen Zeit verwendet werden, wird durch ihre Form erschwert. Insbesondere bei der Berechnung der Auslenkung unter Belastung in der linearen Elastizitätstheorie können Ecken und Kanten zu Singularitäten mit erheblicher Auswirkung auf die Genauigkeit der numerischen Approximation führen. Aus diesem Grund ist die Anwendung eines adaptiven Algorithmus, der diese Problemstellen automatisch erkennt und an diesen eine Gitterverfeinerung durchführt, unverzichtbar für die Verringerung des Fehlers geworden.

Aufgrund der regulären Gitterstruktur sind B-Splines ideal für hierarchische Verfeinerungen, wie sie im Laufe eines adaptiven Verfahrens auftreten, geeignet. Außerdem erlaubt die Multiplikation mit einer Gewichtsfunktion die Modellierung komplizierter Geometrien und vermeidet dadurch eine aufwendige Vernetzung. Desweiteren ermöglichen B-Splines, im Gegensatz zu den klassischen Basisfunktionen, das punktweise Auswerten des Residuums der betrachteten Differentialgleichung und damit die Entwicklung neuer Verfeinerungsstrategien, die einerseits einfacher zu implementieren und andererseits natürlicher als die herkömmlichen sind.

Diese Arbeit beinhaltet die Entwicklung und Analyse von adaptiven Verfeinerungsalgorithmen für die WEB-Methode, welche eine der zwei bekanntesten Finite-Elemente-Verfahren mit B-Splines darstellt. Hierzu werden die bereits existierende umfangreiche Forschung für die Approximation mit uniformen Splines, die hierarchischen Verfeinerungstechniken für klassische Elemente und die Erkenntnisse aus der Untersuchung der Poisson-Gleichung als elementares Beispiel verwendet. Die Lamé-Navier Gleichungen der linearen Elastizität dienen darüber hinaus als Modellproblem, wobei die neu entwickelten Methoden auch auf einfachere elliptische Randwerprobleme angewendet werden können.

Die Vorteile von B-Splines spielen auch bei dem zweiten in dieser Arbeit betrachteten numerischen Approximationsverfahren, der WEB-Kollokation, eine wichtige Rolle. Unter Verwendung eines neu entwickelten Algorithmus zur Umsortierung von Kollokationspunkten wird der uniforme Kollokationsalgorithmus für WEB-Splines auf hierarchische Spline-Räume verallgemeinert. Dabei werden zusammenfallende Kollokationspunkte in den Übergangsbereichen von aufeinanderfolgenden hierarchischen Leveln, wie sie bei der Verwendung der Greville Abszissen auftreten, verhindert ohne die Genauigkeit zu beeinträchtigen. Die ebenfalls durchgeführte Entwicklung von hierarchischen Verfeinerungstechniken ist auch bei dieser Methode notwendig um eine erhebliche Verbesserung der Genauigkeit bei Problemen mit Singularitäten zu erzielen.

Zusätzlich zu elliptischen Gleichungen behandelt diese Arbeit auch zeitabhängige Probleme, mit der Wärmeleitungs- und Wellengleichung als repräsentative Beispiele. Einem konventionellen Lösungsansatz folgend, werden Lösungsmethoden für stationäre Probleme mit verschiedenen Zeitschrittverfahren kombiniert. Die resultierenden neuen Lösungsverfahren vermeiden eine zeitaufwendige Gittererzeugung, sowie im Falle der Kollokation eine numerische Integration. Hieraus ergeben sich klare Vorteile gegenüber klassischen Approximationsmethoden, die anhand der Modellierung eines Tsunami demonstriert werden.

Der Einsatz von hierarchischen Spline-Räumen in beiden WEB-Methoden wird durch die Einführung einer allgemeineren Erweiterung von B-Splines ermöglicht, welche auf Basisfunktionen mit unterschiedlichen Gitterweiten anwendbar ist. Die Notwendigkeit einer solchen Verallgemeinerung ist durch ein Gegenbeispiel motiviert, welches das Fehlschlagen der exakten Darstellung von Polynomen bei einer intuitiven Anwendung der uniformen Erweiterung aufzeigt.

Neben den numerischen Vorzügen von hierarchischen Splines, die sich aus den durchgeführten Berechnungen ergeben, wird außerdem die Eigenschaft der optimalen Approximation von glatten Funktionen durch uniforme Splines mit Hilfe von hierarchischen Räumen auf eine typische Klasse singulären Funktionen verallgemeinert. Ein Vergleich zwischen diesen theoretischen und numerischen Resultaten zeigt zudem, dass die entwickelten adaptiven WEB-Verfahren hierarchische Spline-Räume mit optimaler Approximationseigenschaft erzeugen.