Oberflächenrisse beim Dünnbandgießen von Stahl

Von der Fakultät für
Bergbau, Hüttenwesen und Geowissenschaften
der
Rheinisch – Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von
Diplom-Ingenieur Hans Zimmermann
aus Essen (Ruhr)

Berichter: Prof. R. Kopp Dr. K.-H. Tacke

Tag der mündlichen Prüfung: 13. Oktober 1999

D82 (Diss. RWTH Aachen)

Die vorliegende Arbeit entstand am Max Plank Institut für Eisenforschung GmbH in der Abteilung Metallurgie. Dem Abteilungsleiter Herrn Dr. Tacke danke ich für die mir gegebene Möglichkeit zur Durchführung dieser Arbeit.

Herrn Prof. Kopp danke ich für die Übernahme des Refferates.

Ganz besonders danke ich Herrn Dr. Büchner für die Betreuung dieser Arbeit und für seine stetige Bereitschaft zur Diskussion.

Zu besonderem Dank verpflichtet bin ich den Kollegen und Mitarbeitern der Abteilung Metallurgie, die mir mit Rat und Tat bei allen Versuchen zur Seite standen. Mein Dank gilt besonders den Herren Dr. M. Reifferscheid, Dr. A. Girgensohn, Dr. A. Kühn, R. Graul, F. Rütters, J. Wiechert und Frau M. Bolle.

Berichte aus der Metallurgie

Hans Zimmermann

Oberflächenrisse beim Dünnbandgießen von Stahl

D 82 (Diss. RWTH Aachen)

Shaker Verlag Aachen 2000

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Zimmermann, Hans:

Oberflächenrisse beim Dünnbandgiessen von Stahl/Hans Zimmermann.

Aachen: Shaker, 2000

(Berichte aus der Metallurgie)

Zugl.: Aachen, Techn. Hochsch., Diss., 2000

ISBN 3-8265-8017-6

Copyright Shaker Verlag 2000 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8265-8017-6 ISSN 0945-0904

Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung			
2	Stand des Wissens			
	2.1	Einteilung von Oberflächenfehlern an Flachstahlerzeugnissen	5	
	2.2	Hochtemperatureigenschaften von Stählen	6	
	2.3	Anlagentechnische Ursachen	12	
		2.3.1 Rißursachen beim Strangguß	12	
		2.3.2 Rißursachen beim Dünnbandgießen	14	
	2.4	Eigenschaften beschichteter Gießrollen	21	
	2.5	Zusammenfassung der Literaturkenntnisse	21	
3	Versuchsanlage			
	3.1	Anlagenaufbau	23	
	3.2	Möglichkeiten und Grenzen der Versuchsanlage	25	
	3.3	Standardversuchsbedingungen	35	
	3.4	Versuchsverlauf	36	
	3.5	Anmerkungen zum Prozeßzustand während der Auswertezeit	40	
4	Riß	– und Wärmekontur–Auswertungsverfahren	43	
	4.1	Datenerfassung	43	
	4.2	Berechnung der Riß- und Wärmekontur-Daten	46	
	4.3	Auswertung der Riß- und Wärmekontur-Daten	47	
5	Ver	suchsdurchführung und –ergebnisse	53	
	5.1	Oberflächen- und metallographische Untersuchungen	54	
	5.2	Einfluß der Rollenrauheit auf die Rißbildung	59	
		5.2.1 Zielsetzung	59	

		5.2.2	Herstellung verschiedener Rollenrauheiten		59
		5.2.3	Ergebnisse auf Stahlrollen		65
		5.2.4	Ergebnisse auf Kupferrollen		74
		5.2.5	Vergleich der Ergebnisse von Kupfer- und Stahlrollen $\ .\ .\ .$.		77
	5.3	Einfl u	ß der Rollenbeschichtung auf die Rißbildung		78
		5.3.1	Zielsetzung		78
		5.3.2	Durchführung		79
		5.3.3	Ergebnisse		83
	5.4	Einfl u	ß der Kraft und der Federkonstanten auf die Rißbildung $\ \ldots \ \ldots$		86
		5.4.1	Zielsetzung		86
		5.4.2	Durchführung		86
		5.4.3	Ergebnisse		87
	5.5	Einfl u	ß der Legierungszusammensetzung auf die Rißbildung		90
		5.5.1	Zielsetzung		90
		5.5.2	Einfluß der Elemente S, P, Cu $\ldots\ldots\ldots\ldots$		91
		5.5.3	Eisen–Silizium legierungen mit $1,7\%,\ 3,5\%$ und $6,2\%$ Silizium		93
		5.5.4	Legierungsvergleich		95
	5.6	Zusam	amenfassung der Versuchsergebnisse		98
6	The	rmisch	ne und mechanische Modellierung	1	01
	6.1	Model	lbildung	. 1	101
	6.2	Model	lierung der Abkühlung	. 1	103
	6.3	Therm	nisch/Mechanische Modellierung	. 1	106
	6.4	Ergebi	nisse der Modellberechnung	.]	109
7	Riße	entstel	nungsmechanismen	1	13
	7.1	Tempe	eraturgradienten im Band	. 1	115

INHALTSVERZEICHNIS						
	7.2	Bandverformungen in der Fügezone	121			
	7.3	Wärmeübergang bei rauhen Kontaktflächen	128			
8	Disl	cussion	135			
9	Zusammenfassung					
A	Stat	istische Methoden	153			
	A.1	Stichprobe	154			
	A.2	Schätzen von Parametern	154			
	A.3	Häufigkeitsverteilungen	155			