Berichte aus der Chemie

Udo Eggenweiler

Darstellung und Strukturaufklärung von Chalkogenid-Halogeniden des Bismuts

Shaker Verlag Aachen 2000

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Eggenweiler, Udo:

 $Darstellung\,und\,Strukturaufkl\"{a}rung\,von\,Chalkogenid-Halogeniden\,des\,Bismuts/$

Udo Eggenweiler. Aachen: Shaker, 2000

(Berichte aus der Chemie)

Zugl.: Freiburg, Univ., Diss., 2000

ISBN 3-8265-7896-1

Copyright Shaker Verlag 2000 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8265-7896-1 ISSN 0945-070X

Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Darstellung und Strukturaufklärung von Chalkogenid-Halogeniden des Bismuts

Abstract

Within the three phase systems Bi_2O_3 – BiX_3 (X = Cl, Br, I), single crystals of $Bi_4O_5Cl_2$, $Bi_{24}O_{31}X_{10}$ (X = Cl, Br), and $Bi_7O_9I_3$ were grown by chemical vapour transport. Single crystals of Bi_5O_7I and Bi_5O_7Br were grown at ambient temperature by addition of diluted $H[BiX_4]$ solutions to 5 N KOH. The crystal structure of α - Bi_5O_7I has been redetermined and refined to $R_1 = 0.0375$. It is completely different from the structures of β - Bi_5O_7I and Sb_5O_7I but shows a close relationship to the structure of BiOI. Structure analysis of Bi_3O_4Cl revealed that the structure consists of alternating layers of $[Bi_3O_4]^+$ and Cl^- ; they are arranged in the same way as in the structure of Bi_3O_4Br . The crystal structures of $Bi_24O_{31}X_{10}$ have been redetermined. The obtained structure models confirm a large part of literature model, but differ from it in some details of the O substructure. For $Bi_{24}O_{31}Cl_{10}$, a twofold superstructure of the literature model was found in addition.

In the system Bi_2Se_3 –BiCl₃, single crystals of a compound which was previously known as "Bi₈Se₂Cl₆" (60 mole-% Bi₂Se₃) were obtained by chemical vapour transport (CVT). The crystal structure has been determined and refined to $R_1 = 0.041$. It is similar to the known structure of Bi₁₁Se₁₂Cl₉ but differs from it by a weak fourfold superstructure. The model is partially disordered and is closely related to the structure of BiSeCl. With respect to the (Bi,Se) substructure it consists of "folded ladders" parallel to the **b**-axis. The chemical formula is mostly consistent with Bi₁₁Se₁₂Cl₉ (57.1 mole-% Bi₂Se₃).

Within the system Bi_2Se_3 – $BiBr_3$, single crystals of Bi_3Se_4Br were grown by CVT. The crystal structure has been refined to $R_1 = 0.0367$. With respect to its (Bi,Se) substructure it is related to orthorhombic Bi_2Se_3 and to $Bi_19S_{27}Br_3$.

The new quaternary compounds ABi_6O_9X (A/X = Na/Br, Na/I, K/CI, K/Br, K/I, Rb/Br, Rb/I) were synthesized at ambient temperature by reaction of BiX_3 or $H[BiX_4]$ solution with > 10 N KOH or solid KOH. Single crystals of KBi_6O_9X (X = CI, Br, I) and of $NaBi_6O_9Br$ were grown by addition of diluted $H[BiX_4]$ solutions to > 10 N KOH. The crystal structures were solved by single crystal structure analysis and refined to $R_1 = 0.0214$, 0.0199, 0.0205, and 0.0150 respectively. In addition to that, Rietveld refinements for all seven compounds were performed. All ABi_6O_9X compounds are isotypic; they crystallize in a new structure type with space group $Ia\bar{3}d$. The A, Bi, X positions correspond to a distorted bcc lattice. The (A,X) substructure consists of arrays of nonintersecting linear "chains" parallel to $\langle 1 \ 1 \ 1 \rangle$.