Research Reports in Computer Science

Band 6

Romeo A. Dumitrescu

Two-Stage Programming:
Compilation and Case Studies

Shaker Verlag
Aachen 2000



Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Dumitrescu, RomeoA.:

Two-Stage Programming: Compilation and Case Studies/

Romeo A. Dumitrescu. Aachen: Shaker, 2000
(Research Reportsin Computer Science ; Bd. 6)
Zugl.: Basel, Univ., Diss., 2000

ISBN 3-8265-7793-0

Copyright Shaker Verlag 2000

Allrightsreserved. No part of this publication may be reproduced, storedina
retrieval system, ortransmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, withoutthe prior permission
ofthe publishers.

PrintedinGermany.

ISBN 3-8265-7793-0
ISSN 1436-6967

Shaker Verlag GmbH « P.O.BOX 1290 « D-52013 Aachen
Phone: 0049/2407 /9596-0 « Telefax: 0049/2407/9596-9
Internet: www.shaker.de * eMail:info@shaker.de




Abstract

Two-Stage Programming (2sP) is a novel, mixed-paradigm approach
(functional/imperative) to developing reliable programs based on com-
plete run-time checking of computations with respect to a given spec-
ification. A 2sP program consists of a functional specification and an
imperative coordination tightly connected to the specification. The co-
ordination maps the specification to an imperative and possibly paral-
lel/distributed program. During run-time, the consistency between the
coordination and specification is checked based on their connection. Nor-
mal termination of a 2SP program execution implies the correctness of
the computed results with respect to the specification, for that execution.

I address in this thesis the impact of 2SP’s run-time consistency
checks on both program reliability and efficiency.

I describe the basic ideas of the first efficient implementation of 2sp I
have developed, and present, based on this implementation, an analysis
of two significant case studies (one sequential, the other parallel), which
shows that 2sP offers automatic run-time result checking and enhanced
debugging support through early detection and precise location of errors
at run-time, for an increase of about one order of magnitude of the
program execution time.

I consider that this initial study shows that run-time consistency
checks are reasonably efficient, and programming languages can benefit
by including a 2sp-like consistency checker mechanism. This is especially
useful for ML, well-known as a very robust language, since I show that a
2SP program can be both more reliable and faster than its corresponding
ML program. )

Keywords Run-time checking, result checking, functional /imperative
programming, debugging, coordination language.



	

