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Abstract

Two-Stage Programming (2sP) is a novel, mixed-paradigm approach
(functional/imperative) to developing reliable programs based on com-
plete run-time checking of computations with respect to a given spec-
ification. A 2sP program consists of a functional specification and an
imperative coordination tightly connected to the specification. The co-
ordination maps the specification to an imperative and possibly paral-
lel/distributed program. During run-time, the consistency between the
coordination and specification is checked based on their connection. Nor-
mal termination of a 2SP program execution implies the correctness of
the computed results with respect to the specification, for that execution.

I address in this thesis the impact of 2SP’s run-time consistency
checks on both program reliability and efficiency.

I describe the basic ideas of the first efficient implementation of 2sp I
have developed, and present, based on this implementation, an analysis
of two significant case studies (one sequential, the other parallel), which
shows that 2sP offers automatic run-time result checking and enhanced
debugging support through early detection and precise location of errors
at run-time, for an increase of about one order of magnitude of the
program execution time.

I consider that this initial study shows that run-time consistency
checks are reasonably efficient, and programming languages can benefit
by including a 2sp-like consistency checker mechanism. This is especially
useful for ML, well-known as a very robust language, since I show that a
2SP program can be both more reliable and faster than its corresponding
ML program. )
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