

Berichte aus dem Institut für Elektrische Energiewandlung

Andreas Echle

Oberwellengerechter Entwurf eines elektronisch kommutierten Axialflussmotors für den Einsatz in Elektrowerkzeugen

Band 18

Oberwellengerechter Entwurf eines elektronisch kommutierten Axialflussmotors für den Einsatz in Elektrowerkzeugen

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor–Ingenieurs (Dr.–Ing.) genehmigte Abhandlung

Vorgelegt von

Andreas Echle

aus Heilbronn

Hauptberichterin: Mitberichter: Prof. Dr.–Ing. Nejila Parspour Prof. Dr.–Ing. Bernd Gundelsweiler

Tag der mündlichen Prüfung: 0

01.03.2023

Institut für Elektrische Energiewandlung der Universität Stuttgart

2023

Berichte aus dem Institut für Elektrische Energiewandlung

Band 18

Andreas Echle

Oberwellengerechter Entwurf eines elektronisch kommutierten Axialflussmotors für den Einsatz in Elektrowerkzeugen

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2023

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9335-3 ISSN 2196-9213

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als Akademischer Mitarbeiter am Institut für Elektrische Energiewandlung der Universität Stuttgart.

Einen besonderen Dank möchte ich meiner Hauptberichterin Frau Prof. Dr.-Ing. Nejila Parspour aussprechen, die mir die Promotion ermöglichte und mich während der gesamten Zeit am Institut mit Rat und Tat unterstützte. Zudem danke ich Herrn Prof. Dr.-Ing. Bernd Gundelsweiler für die Übernahme des Mitberichts und das entgegengebrachte Interesse an meiner Arbeit.

Bedanken möchte ich mich zudem bei meinen Kollegen am Institut für die Hilfsbereitschaft, die Unterstützung sowie das äußerst angenehme Arbeitsklima. Besonderer Dank gilt Urs Pecha für die unzähligen fachlichen Diskussionen und Christian Grüner für seine uneingeschränkte Unterstützung am Prüfstand. Eure Beiträge haben maßgeblich zum Gelingen dieser Arbeit beigetragen.

Danken möchte ich auch der Institutswerkstatt um Herrn Hermann Kattner mit seinem Team Beate Haase und Markus Beesch für die Gespräche und Kommentare im Bereich der mechanischen Fertigung und darüber hinaus. Daneben möchte ich auch Evelin Eiselt und Rainer Adelhelm nennen, welche ich in meiner Zeit an der Universität immer gerne aufsuchte und um Rat fragte.

Den von mir in wissenschaftlichen Arbeiten betreuten Studierenden und den wissenschaftlichen Hilfskräften danke ich für ihr Engagement. Ihre fachlichen Beiträge haben maßgeblich zum Gelingen dieser Arbeit beigetragen. Besonders möchte ich hier Gerold Schmidt, Nina Laumer, Rongrong Zhang und Yuancong Gong nennen.

Ein persönlicher Dank gilt meiner Frau, meinen drei Kindern und meiner Familie für ihre uneingeschränkte Unterstützung und der unendlichen Geduld für ein solch zeitraubendes Vorhaben.

Inhaltsverzeichnis

Ab	kürzu	ingsverzeichnis	IX		
Sy	mbol	verzeichnis	XI		
Zu	samn	nenfassung	XVII		
Ab	strac	t	XIX		
1.	Einleitung				
2.	Pern	nanentmagnetisch erregte Kleinmotoren in axialer Bauform	5		
	2.1.	Stand der Technik	5		
	2.2.	Aufbau, Funktionsprinzip und Topologien der AFPM	7		
	2.3.	Theoretischer Vergleich zum Radialflussmotor	10		
		2.3.1. Herleitung der Entwurfsgleichung der AFPM	10		
		2.3.2. Theoretische Potentiale des Axialflussmotors	11		
	2.4.	Luftspaltoberwellen und deren Auswirkungen auf die Motorverluste	15		
	2.3.	Konventionelle Beschreibung von BLDC Motoren	18		
		2.5.1. Schichtenmodell	19		
		2.3.2. Oleichströhnmödelt	21		
3.	Hocl	n ausgenutzte Kleinantriebe für handgeführte Elektrowerkzeuge	23		
	3.1.	Systemübersicht	24		
		3.1.1. BLDC-Motoren in handgeführten Elektrowerkzeugen	25		
		3.1.2. Leistungselektronik	26		
		3.1.3. Ansteuerverfahren	27		
	3.2.	Betriebsverhalten	29		
		3.2.1. Vereinfachtes Betriebsverhalten	30		
		3.2.2. Näherung zur Beschreibung des physikalischen Betriebsverhal-			
		tens im Dauerbetriebsbereich	31		
	3.3.	Anforderungsdefinition	33		
		3.3.1. Untersuchung des Gesamtsystems	33		
		3.3.2. Referenzmotor	36		
	3.4.	Eingrenzung der Arbeit	37		
4.	Anal	ytische Beschreibung	39		
	4.1.	Analytische Berechnung des elektromagnetischen Drehmoments	40		

	4.2.	Theorie	e der quasi-stationären magnetischen Felder	41			
		4.2.1.	Durchflutungsgesetz	41			
		4.2.2.	Induktionsgesetz	42			
		4.2.3.	Magnetische Energie und Koenergie	42			
	4.3.	Theorie	e der Wicklungsfunktion	44			
		4.3.1.	Definition der Windungs- und Wicklungsfunktion	46			
	4.4.	Permar	nentmagnetbehafteter Kreis	48			
		4.4.1.	Korrekturfaktoren der analytischen Berechnung	49			
		4.4.2.	Arbeitspunkt der PMe	51			
		4.4.3.	Die Remanenzflussdichtefunktion	53			
		4.4.4.	Energie und Kräfte im PM-erregten Kreis	54			
	4.5.	Analyti	ische Beschreibung von Zahnspulenwicklungen	57			
		4.5.1.	Konstruktion der Wicklungsfunktion	57			
		4.5.2.	Zonungsfaktor der Wicklungsfunktion 1. Art	60			
		4.5.3.	Zonungsfaktor der Zahnspulen 2. Art	62			
		4.5.4.	Durchflutungsverteilung bei nicht sinusförmiger Anregung.	65			
		4.5.5.	Induzierte Spannung	68			
		4.5.6.	Elektromagnetisches Drehmoment	71			
5.	Entv	urf und	I Realisierung eines Prototypen	75			
	5.1.	. Entwurfsprozess					
	5.2.	Grober	ntwurf des Motors	79			
	5.3.	FE-ges	tützte Optimierung	83			
		5.3.1.	Sensitivitätsanalyse und Optimierung	83			
		5.3.2.	Dynamisches Motorverhalten	91			
		5.3.3.	Vergleich zum Entwurf und Schlussfolgerung	99			
	5.4.	Aufbau	ı des Prototypen	99			
		5.4.1.	Fertigung von Axialflussmotoren: Stand der Technik und Her-				
			ausforderungen	99			
		5.4.2.	Gesamtkonstruktion des Prototypen	101			
		5.4.3.	Konstruktion und Fertigung der Baugruppe Stator	103			
		5.4.4.	Konstruktion und Fertigung der Baugruppe Rotor	104			
6.	Inbe	triebnał	nme und Vermessung	107			
	6.1.	Prüfsta	nd	107			
	6.2.	Betrieb	osverhalten des Prototypen	110			
		6.2.1.	BEMF und Spannungskonstante	110			
		6.2.2.	Strom-Drehmoment-Verhalten	110			
		6.2.3.	Motorkennlinie	113			
	6.3.	Motory	verluste	114			
		6.3.1.	Energiebilanz der elektromechanischen Energiewandlung	115			
		6.3.2.	Wirkungsgradkennfeld	116			
		6.3.3	Separation der Einzelverluste	116			
		6.3.4	Inneres Wirkungsgradkennfeld	118			
		5.2.1.					

	6.4. Fazit	120
7.	Zusammenfassung und Ausblick	121
A.	Zusätze zu den PM-erregten Kleinmotoren mit axialer Bauform A.1. Konturkarte der doppelseitigen AFPM	125 125
	A.2. Marktanalyse Axialflussmotoren	125
В.	Zusätze zur analytischen Berechnung B.1. Geometrische Umrechnungsformeln B.2. Bestimmung der Korrekturfaktoren B.3. Berechnung der Stranginduktivitäten B.4. Elektrische Motorparameter der Co-Simulation B.4.1. Induktivitätsverlauf B.4.2. BEMF-Verlauf	129 129 131 133 133 133
C.	Zusätze zur Prüfstandsarbeit C.1. Vermessung des Referenzmotors C.2. Messdatenauswertung C.2.1. BEMF des Referenzmotors C.2.2. Verlustleistung des Referenzmotors im Leerlauf C.2.3. Wirkungsgradkennfelder des Referenzmotors C.3. Prüfstandsautomatisierung	135 135 136 136 136 137 138
D.	Zusätze zur Konstruktion des Prototypen D.1. Konstruktion und Baugruppen D.2. Technische Zeichnungen	141 141 142
Lite	eraturverzeichnis	147

Abkürzungsverzeichnis

Abkürzung	Beschreibung	
3~PWR	Dreiphasiger Pulswechselrichter	
3D	Dreidimensional	
AFIR	Axialflussmotor mit internem Rotor (engl.: Axial Flux Internal Rotor)	
AFPM	Permanentmagnetisch erregter Axialflussmotor	
BEMF	Gegen-Elektromotorische Kraft (eng. Back Electro- motive Force)	
BLDC	Bürstenloser Gleichstrommotor	
CAD Co-Simulation	Computer-Aided Design Multiphysikalische Simulation mit schwacher Kopp- lung	
DGL	Differentialgleichung	
ECS	Schaltkreisberechnung (engl. Electronic Circuit Simu- lation)	
ESB	Elektrisches Ersatzschaltbild	
FE	Finite Elemente	
GFK GM	Glasfaserverstärkter Kunststoff Gleichstrommotor	
KS	Koordinatensystem	
LE	Leistungselektronik	
LUT	Lookup-Table	
MEC	Magnetisch Äquivalenter Kreis (Magnetic Equivalent Circuit)	
MOSFET	Metall-Oxid-Halbleiter-Feldeffekttransistor (Metal- Oxide-Semiconductor Field-Effect Transistor)	

Abkürzung	Beschreibung
PM PWM	Permanentmagnet Pulsbreitenmodulation (Pulse Width Modulation)
RFPM RM	Permanentmagnetisch erregter Radialflussmotor Referenzmotor
S235JR	Werkstoffbezeichnung für warmgewalzten unlegierten Baustahl
Single-Sided SMC	Einseitige Topologie (engl.: Single-Sided Topology) Soft Magnetic Composite
TORUS	Axialflussmotor mit internem Stator
WF	Wicklungsfunktion
WFA	Wicklungsfunktions Theorie (Winding Function Approach)
WSB	Wirbelstrombremse
ZSW	Zahnspulenwicklung

Symbolverzeichnis

Symbol	Einheit	Beschreibung
а	-	Anzahl an parallel geschalteten Spulengruppen, Geo- metriefaktor
A_{δ}	m^2	Luftspaltfläche
A_{I}	$^{\rm A}/_{\rm m}$	Strombelag
$A_{\mathrm{I},\mathrm{\bar{r},peak}}$	$^{A}/_{m}$	Spitzenstrombelag auf dem mittleren Luftspaltdruch- messer
$A_{\rm I,in}$	$^{\rm A}/_{\rm m}$	Strombelag auf dem Innendurchmesser
A _{I,in,peak}	$^{\rm A}/_{\rm m}$	Spitzenstrombelag auf dem Innendurchmesser
$A_{\mathbf{M}}$	m ²	Magnetpolfläche
$A_{\tau_{\rm p},{\rm Stator}}$	m^2	Statorpolfläche
A	Vs/m	Magnetisches Vektorpotential
$A_{\rm Z}$	m^2	Statorzahnquerschnittsfläche
B_{δ}	Т	Radialkomponente der Luftspaltinduktion
\overline{B}_{δ}	Т	Mittlere Luftspaltinduktion
$B_{\rm M}$	Т	Flussdichte im Permanentmagneten
$b_{ m N}$	mm	Nutschlitzbreite
$B_{\rm R}$	$V s/m^2$	Remanenzinduktion
b_{WF}	m	Breite Wickelfenster
$c_{\rm G}$	-	Übersetzungsverhältnis Getriebe
d_{Draht}	mm	Drahtdurchmesser
d_{δ}	m	Mittlerer Luftspaltdurchmesser
$d_{ m in}$	m	Innendurchmesser aktiver Teil
$d_{\rm out}$	m	Außendurchmesser aktiver Teil
e	-	Eulersche Zahl
$E_{\rm A}$	V	Effektive Ankerspannung
e_x	V	Zeitwert der induzierten Spannung im Strang x
Н	$^{\rm A}/_{\rm m}$	Betrag der magnetischen Feldstärke

Symbol	Einheit	Beschreibung
$h_{ m g}$	m	Effektive Luftspaltlänge Ersatzreluktanz
$H_{\rm M}$	A/m	Feldstärke im Magneten
$H_{\rm c,B}$	$^{\rm A}/_{\rm m}$	Koerzitivfeldstärke der Flussdichte
H_{δ}	$^{\rm A}/_{\rm m}$	Betrag der magnetischen Feldstärke im Luftspalt
$h_{\rm Rj}$	m	Rotorjochhöhe
h_{M}	mm	Permanentmagnethöhe
$h_{\rm pSc}$	m	Höhe Polschuh
$h_{\rm g,i}$	m	Ideelle Luftspaltlänge
Ι	А	Effektivwert des elektrischen Stromes
I_0	А	Effektiver Leerlaufstrom
$I_{\rm A}$	А	Ankerstrom
ia	А	Strom im Strang a
IB	А	Effektiver Strangstrom
i _b	А	Strom im Strang b
i _c	А	Strom im Strang c
$I_{\rm F,WSB}$	А	Effektivwert des Erregerstroms der WSB
$I_{\rm Fe,0}$	А	Eisenverluststrom im Leerlauf
$I_{\rm S}^*$	А	Abgeschätzter efffektiver Stillstandsstrom
i _{sp}	А	Spulenstrom
j	-	Imaginäre Einheit
k _C	-	Carter Faktor
k _{Cu}	%	Kupferfüllfaktor
k _D	-	Verhältnis Innen- zu Außendurchmesser
$k_{\rm E}$	^{mVs} / _{rad}	Spannungskonstante des Gleichstrommodells
ke	^{mVs} / _{rad}	Spannungskonstante der induzierten Strangspannung
$k_{\mathbf{M}}$	$^{mNm}/_{A}$	Drehmomentkonstante
ks	_	Sättigungsfaktor
$L_{\rm A}$	Ω	Ankerinduktivität
La	Ω	Stranginduktivität von Strang a
lakt	m	Aktive Länge Blechpaket
l _{Fe}	m	Länge einer Strecke in Eisen
М	N m	Drehmoment
т	-	Strangzahl

Symbol	Einheit	Beschreibung
$M_{\rm el}$	Nm	Elektromagnetisches Drehmoment
$M_{\rm el,S}^*$	N m	Elektromagn. Stillstands-Drehmoment
$M'_{\rm el}$	N m	Abgeschätztes elektromagnetisches Drehmoment
M _M	N m	Motormoment
$M_{\rm S}$	N m	Stillstands-Drehmoment
M _{screw}	N m	Schraubenmoment
$M_{ m v}$	N m	Verlustmoment
$M_{\rm WSB,max}$	Nm	Maximales Bremsmoment der Wirbelstrombremse
$N_{ m w}$	-	Aktiv im Eingriff befindliche Windungszahl eines Stranges
Ν	_	Windungszahl
n	_	Normalenvektor
n	$^{1}/_{min}$	Drehzahl
n_0	$^{1}/_{min}$	Leerlaufdrehzahl
<i>n</i> _M	$^{1}/_{min}$	Motordrehzahl
<i>n</i> _{screw}	$^{1}/_{min}$	Schraubendrehzahl
$N_{\rm sp}$	_	Windungszahl einer Spule
<i>n</i> _{sp}	_	Windungsfunktion einer Spule
$\overline{n}_{ m sp}$	-	Mittelwert Windungsfunktion einer Spule
p'	-	Polpaarzahl einer Urwicklung
р	-	Polpaarzahl
P _{ab}	W	Abgegebene Leistung
$P_{\rm el}$	W	Elektrische Wirkleistung
Pmech	W	Mechanische Leistung
$P_{\rm v}$	W	Verlustleistung
$P_{\rm v,0}$	W	Verlustleistung im Leerlauf
<i>P</i> _{vCu}	W	Verlustleistung in elektrischen Leitern, Kupferverluste
P _{vFe}	W	Eisenverluste
$P_{\rm vL}$	W	Lüftungsverluste
$P_{\rm vLE}$	W	Verlustleistung in der Leistungselektronik
$P_{\rm vMech}$	W	Mechanische Verlustleistung
$P_{\rm vR}$	W	Reibungsverluste
$P_{\rm vWir}$	W	Wirbelstromverluste

Symbol	Einheit	Beschreibung
Q'	_	Anzahl Zeiger einer Urverteilung
Q	_	Nutzahl
q	_	Lochzahl
q_{n}	-	Lochzahl Nenner
q_z^+	-	Anzahl positiver Spulen
q_z^-	-	Anzahl negativer Spulen
q_z	-	Lochzahl Zähler
$R_{\rm A}$	Ω	Ankerwiderstand
Ra	Ω	Strangwiderstand von Strang a
rδ	m	Mittlerer Luftspaltradius
$R_{\rm i}$	Ω	Anker-Vorwiderstand
R _{m,Fe}	$^{\rm A}/_{\rm Vs}$	Magnetischer Widerstand von Eisen
$R_{\rm m,PM}$	$^{\rm A}/_{\rm Vs}$	Magnetischer Widerstand des Magneten
$R_{\mathrm{m},\delta}$	$^{\rm A}/_{\rm Vs}$	Magnetischer Widerstand des Luftspalts
r _{out}	m	Außenradius aktiver Teil
r	_	Raumvektor
t	_	Tangentialvektor
t	S	Zeit
tp	-	Anzahl der Urwicklungen
T _{th}	Κ	Allgemeine Temperatur
<i>t</i> _{uv}	-	Anzahl an Urverteilungen
$U_{\rm ZK}$	V	Zwischenkreisspannung
V_{δ}	m ³	Luftspaltvolumen
Wmag	J	Magnetische Feldenergie
w _{mag}	J	Magnetische Feldenergiedichte
$W'_{\rm mag}$	J	Magnetische Koenergie
$w'_{\rm mag}$	J	Magnetische Koenergiedichte
$w'_{\max,\delta}$	J	Magnetische Koenergiedichte im Luftspalt
X	_	Anzahl Nutschritte positiver zu negativer Spule
Y	-	Anzahl Nutschritte gezonter Spulen
$\alpha_{\rm N}$	rad	Nutwinkel
$\alpha_{\rm NSc}$	%	Poldeckungsfaktor Stator

Symbol	Einheit	Beschreibung
$\alpha_{\rm pSc}$	rad	Zahnwinkel
$\alpha_{\rm Z}$	rad	Zeigerwinkel
β_{I}	rad	Stromlückwinkel
$\beta_{ m kM}$	rad	Magnetischer Kommutierungswinkel
$\beta_{ m L}$	rad	Rotorlagewinkel
$\beta_{ m N}$	rad	Nutöffnungswinkel
$\beta_{\rm S}$	rad	Spulenweitewinkel
$\beta_{ m M}$	rad	Rotorsehnungswinkel
γ	rad	Statorgebundener mechanischer Umlaufwinkel
δ	m	Geometrische Luftspaltlänge
η	-	Wirkungsgrad
$\eta_{ m G}$	-	Wirkungsgrad Getriebe
Θ	А	Magnetische Durchflutung
θ	rad	Winkelversatz der Stränge
θ	rad	Mechanischer Polradwinkel
θ_x	rad	Phasenverschiebung von Strang x
λ	-	Korrekturfaktor beim Vergleich der Entwurfsgleichun- gen
μ_0	^{Vs} /Am	Permeabilität des Vakuums
$\mu_{\rm r,Fe}$	-	Relative Permeabilität im weichmagn. Werkstoff
$\mu_{ m r,M}$	_	Relative Permeabilität im PM
ν	_	Ordnungszahl der Stromschwingung
ξ _{kM}	_	Kommutierungsfaktor
ξ_{I}	_	Strom-Lückfaktor
$\xi_{ m M}$	-	Rotorfaktor
$\xi_{\rm z}^+$	-	Zonungsfaktor positive Spulen
ξ_z^-	-	Zonungsfaktor negative Spulen
$\xi_{ m n}$	_	Nutschlitzfaktor
ξs	-	Sehnungsfaktor
ξsM	_	Rotorsehnungsfaktor
$\dot{\xi}_{ m w}$	_	Wicklungsfaktor
ξz	_	Zonungsfaktor
π	_	Kreiszahl

Symbol	Einheit	Beschreibung
ρ	C/m^3	Elektrische Raumladungsdichte
σ	_	Streuziffer
υ	_	Ordnungszahl der Ortswellen
$ au_{ m N}$	mm	Nutteilung
Φ	V s	Magnetischer Fluss
Φ_{δ}	V s	Magnetischer Luftspaltfluss
Φ_{M}	V s	Magnetischer Magnetfluss
Ψ	V s	Flussverkettung
$\hat{\Psi}_{\mathrm{M}}$	Wb	Scheitelwert der Flussverkettung der PM
Ω	$^{1}/_{s}$	Mechanische Winkelgeschwindigkeit
ω	$^{1}/_{s}$	Elektrische Winkelgeschwindigkeit
\mathcal{B}_{δ}	Т	Komplexer Luftspaltinduktionsverlauf
$\underline{\mathcal{B}}_{M}$	Т	Komplexer Flussdichteverlauf im Magneten
$\underline{\mathcal{B}}_{R}$	$V s/m^2$	Komplexe Remanenzfunktion
$\underline{\mathcal{F}}_{M}$	А	Komplexe Durchflutungsverteilung PM-erregt
$\underline{\mathcal{F}}_{w}$	А	Komplexe Durchflutungsverteilung stromerregt
$\underline{\mathcal{H}}_{\delta}$	A/m	Komplexer Feldstärkeverlauf im Luftspalt
$\underline{\mathcal{H}}_M$	A/m	Komplexer Feldstärkeverlauf im Magneten
$\underline{\mathcal{N}}$	_	Wicklungsfunktion
${\mathcal V}_\delta$	А	Magnetische Luftspaltspannung
\mathcal{V}_{M}	А	Magnetische Spannung im PM
N	_	Menge der natürlichen Zahlen
U	_	Menge der ungeraden natürlichen Zahlen
\mathbb{Z}	-	Menge der ganzen Zahlen

Zusammenfassung

In dieser Arbeit wird ein permanentmagnetisch erregter bürstenloser Gleichstrommotor (BLDC) in axialer Bauform für den Einsatz in einem handgeführten Elektrowerkzeug untersucht. Hierzu wird ein Referenzmotor in der Anwendung Akku-Bohrschrauber messtechnisch analysiert und klassifiziert, und es werden Anforderungen abgeleitet. Zum Nachweis der Machbarkeit wird ein Prototyp-Motor fertigungstechnisch realisiert, auf einem Prüfstand vermessen und dessen Einsatz bewertet.

Der entwickelte Entwurfsprozess des Prototypen basiert auf einem Grobentwurf mit anschließender numerischer Optimierung des magnetischen Kreises. Hierbei werden Kommutierungseffekte und deren Auswirkungen auf das Betriebsverhalten mittels Näherungen berücksichtigt. Das messtechnisch ermittelte Betriebsverhalten des Prototypen verifiziert abschließend die Ergebnisse aus den analytischen Ansätzen wie auch der numerischen Feldberechnung.

Die eingeführten analytischen Berechnungsmethoden beschäftigen sich ausgiebig mit der oberwellengerechten Beschreibung von Luftspaltfeldern elektrischer Maschinen mit blockförmigen Stromverläufen. Es wird ein wichtiger Beitrag zur Modellierung elektromagnetischer Luftspaltkräfte in permanentmagnetisch erregten Maschinen geleistet. Hierzu wird im Detail auf die energetischen Verhältnisse im magnetischen Kreis eingegangen, und es werden die Auswirkungen bei deren Änderung auf die resultierenden Kräfte aufgezeigt, bewertet und analytisch geschlossen hergeleitet.

Die vorliegende Arbeit beschäftigt sich mit der Analyse, Berechnung und Fertigung von hoch ausgenutzten Motoren in axialer Bauform. Aufgrund der geringen Anzahl an realisierten Aufbauten im Bereich <1kW leistet diese Arbeit einen wichtigen Beitrag zur Bewertung, Einordnung und Diskussion des axialen Motorkonzepts im Vergleich zum konventionellen BLDC Motor.

Abstract

In this thesis, a permanent-magnet excited brushless DC-Motor (BLDC) with an axial design is investigated for using in a hand-held power tool. For this purpose, a reference motor, in the application cordless drill, is analyzed by measurement, classified and requirements are derived. To prove the feasibility, a prototype-motor is built up, measured on a test bench and its use evaluated.

The design process of the prototype is based on an analytical design with subsequent numerical optimization of the magnetic circuit. Commutation effects and their effects on the operating behavior are taken into account by means of approximations. The operational behavior of the prototype, determined by measurement, finally verifies the results from the analytical approaches as well as the numerical field calculation.

The introduced analytical calculation methods deal extensively with the harmonic description of air gap fields of electrical machines with block-shaped current waveforms. An important contribution is made to the modeling of electromagnetic air gap forces in permanent magnet excited machines. For this purpose, the energetic conditions in the magnetic circuit are dealt with in detail and the effects of their change on the resulting forces are shown, evaluated and analytically derived.

This thesis deals with the analysis, calculation and production of high utilization motors in axial design. Due to the small number of realized setups in the range <1kW, this work makes an important contribution to the evaluation, classification and discussion of the axial motor concept in comparison to the conventional BLDC motor.