

Gregor Hemken

Braunschweig

Experimentelle Untersuchungen zum Einsatz von Schmelzklebstoffen in der Mikroelektronik am Beispiel des Flip-Chip-Klebens

Forschungsberichte des Instituts für Füge- und Schweißtechnik

Band 69

Herausgeber: Prof. Dr.-Ing. Klaus Dilger

Experimentelle Untersuchungen zum Einsatz von Schmelzklebstoffen in der Mikroelektronik am Beispiel des Flip-Chip-Klebens

Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

Gregor Hemken aus (Geburtsort): Oldenburg (Oldb) eingereicht am: 08.12.2022 mündliche Prüfung am: 15.05.2023

von:

Gutachter: Prof. Dr.-Ing. Klaus Dilger

Prof. Dr.-Ing. Annika Raatz

Forschungsberichte des Instituts für Füge- und Schweißtechnik

Band 69

Gregor Hemken

Experimentelle Untersuchungen zum Einsatz von Schmelzklebstoffen in der Mikroelektronik am Beispiel des Flip-Chip-Klebens

Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2023

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9316-2 ISSN 1614-4783

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Füge- und Schweißtechnik (ifs) der Technischen Universität Braunschweig. Ein Großteil der Untersuchungsergebnisse wurde im Rahmen des Sonderforschungsbereichs 516: Konstruktion und Fertigung aktiver Mikrosysteme, Teilprojekt B8 "Klebstoffverarbeitung in Batch-Technologie" sowie anwendungsorientiert in mehreren Industrieprojekten erarbeitet.

An dieser Stelle möchte ich meinem Doktorvater, Herrn Prof. Dr.-Ing. Klaus Dilger, dem Leiter des ifs, nicht nur für die Ermöglichung und Betreuung der Arbeit, sondern auch für Gewährung der Freiräume sowie der Begutachtung meiner Dissertation meinen herzlichen Dank aussprechen.

Bei Frau Prof. Dr.-Ing. Annika Raatz, der Leiterin des Instituts für Montagetechnik (match) der Leibniz Universität Hannover möchte ich mich für die Übernahme des Korreferates und die aufmerksame Durchsicht der Arbeit sehr herzlich bedanken. Herrn Prof. Dr.-Ing. Rainer Tutsch sei für den Vorsitz im Prüfungsausschuss gedankt. Ein zusätzlicher Dank gilt dem ehemaligen Leiter der Abteilung Mikrofügen des ifs, Prof. Dr.-Ing. Stefan Böhm, für die fachliche und technische Unterstützung.

Darüber hinaus gilt hier allen Mitarbeiterinnen und Mitarbeitern des Institutes mein herzlicher Dank. Dies gilt besonders für Silke Ziehm, Kai Noack und Markus Köhler, die mich in jeder Phase der Arbeit stets unterstützt haben.

Oldenburg, im Mai 2023

Gregor Hemken

Inhaltsverzeichnis

ΑJ	obilo	lungsv	erzeichnis	VI
Ta	bell	enverz	eichnis	XI
Αl	kür	zungsv	verzeichnis	XII
1.	Ein	leitung	·	1
		_	n in der Mikrosystemtechnik	
			ation	
			tzung und experimentelle Vorgehensweise	
2.			Technik	
			u- und Verbindungstechnik für hybride Mikrosysteme	
	2.1	2.1.1	Hybrider Aufbau von Elektronikkomponenten	
		2.1.2	Gehäuse- und Montagetechnologien	
		2.1.3	Nacktchipmontage	
	2.2		echniken für das Flip-Chip-Bonden	
		2.2.1	Weichlöten	
		2.2.2	Eutektisches Löten (Anlegieren)	
		2.2.3	Anglasen	
		2.2.4	Flip-Chip-Kleben	
		2.2.4.1	•	
		2.2.4.2	••	
	2.3	Schme	elzklebstoffe	
		2.3.1	Thermoplastische Schmelzklebstoffe	24
		2.3.2	Temperaturabhängige Eigenschaften von Thermoplasten	25
		2.3.3	Reaktive Schmelzklebstoffsysteme	
		2.3.4	Schmelzklebstoff-Dosiersysteme	29
		2.3.5	Fügeprozess Schmelzkleben	30
3.	Wis	ssensch	aftlich-Technische Problemstellung	35
			ntane Verfahrensgrenzen im Mikrokleben	
			mfelder in der Prozesstechnik des Flip-Chip-Klebens	
			derungsprofil für den Einsatz von Schmelzklebstoffen	
		in mikrotechnischen Fügeprozessen		37
		3.3.1	Anforderungen aufgrund der Werkstoffkenndaten	
			der Fügepartner	38
		3.3.2	Anforderungen aufgrund der Fertigungsrandbedingungen	39
		3.3.3	Anforderungen aufgrund der Klebstoffkennwerte	40
		3.3.4	Anforderungsprofil Beanspruchung	41
	3.4	Zusam	menfassung	42

4.	Me	ss- und	Versuchseinrichtungen	. 43
	4.1	Thermi	ische Analyseformen	.43
		4.1.1	Dynamisch Mechanische Analyse (DMA)	.43
		4.1.2	Dynamische Differenzkalorimetrie (DSC)	.46
		4.1.3	Rheologie	.47
	4.2	Mecha	nisch –technologische Charakterisierung	.48
		4.2.1	Herstellung von geklebten Si-Probekörpern	.48
		4.2.2	Druck-Scher-Prüfung an Si-Probekörpern	.50
		4.2.3	Herstellung von Flip-Chip-Probekörpern	.51
		4.2.4	Druck-Scher-Prüfung an Flip-Chip-Probekörpern	.54
			Bruchflächenanalyse	
	4.3	Messur	ng der elektrischen Leitfähigkeit von Klebstoffen	.56
	4.4	Tempe	raturmessung in der Klebfuge	.58
	4.5	Volum	enmessung von Mikro-Schmelzklebstoffstrukturen	. 58
	4.6	Schable	onendrucker	. 59
5.	Uni	tersuchi	ung des Potentials von Schmelzklebstoffen	
•			archikproduktion	. 60
	5.1	Klebsto	offscreening	. 60
		5.1.1	Thermische Analyse von Schmelzklebstoffen	
		5.1.1.1	•	
		5.1.1.2		
		5.1.1.3		
		5.1.1.4		
		5.1.1.5		
		5.1.2		
			Bewertung des Klebstoffscreenings sowie Schlussfolgerungen.	
	5.2		llung von Mikro-Schmelzklebstoffgeometrien	
			Herstellung von Pulverfraktionen	
			Herstellung von Schmelzklebstoff-Filmen	
		5.2.3	Herstellung von Rundpartikeln	.76
		5.2.4	Bewertung der Herstellbarkeit von	
			Mikro-Schmelzklebstoffgeometrien	.78
	5.3		klung von Applikationstechniken zur	
		Schme	lzklebstoffvorbeschichtung	.78
		5.3.1	Applikation von Schmelzklebstoffkugeln	.78
		5.3.2	Applikation von Schmelzklebstoff-Filmen	. 79
		5.3.3	Applikation von Schmelzklebstoff-Pulverfraktionen	.79
		5.3.4	Applikation von Schmelzklebstoffdispersionen	. 82
		5.3.4.1	Zusammensetzung von Schmelzklebstoffdispersionen	. 82

		5.3.4.2	Charakterisierung der Schmelzklebstoffdispersionen	83
		5.3.4.3	Einflussfaktoren beim Schablonendruck	88
		5.3.4.4	Auswertungsmethodik Schablonendruck	90
		5.3.4.5	Prozessoptimierung des Schablonendrucks von	
			Schmelzklebstoff-Dispersionen	91
			Bewertung der Applikationstechniken sowie	
			Schlussfolgerungen	95
6.	Ver	ifikatio	n der bisherigen Erkenntnisse in einem	
	Flip	o-Chip-l	Fügeprozess für RFID	97
	6.1	Probler	nstellung beim Fügen von RFID-Systemen	97
	6.2	Experi	mentelle Vorgehensweise	98
	6.3	Entwic	klung und Charakterisierung anisotrop leitfähiger	
		Schmel	lzklebstoffe	98
		6.3.1	Schmelzklebstoff-Auswahlmatrix für RFID-Applikationen	99
		6.3.2	Formulierung von ACA-Schmelzklebstoff-Dispersionen	99
		6.3.2.1	Leitpartikel	. 100
		6.3.2.2	Mikro-Verkapselung von Ag-Leitpartikeln	. 101
		6.3.2.3	Zusammensetzung der ACA-Schmelzklebstoffdispersioner	ı 101
		6.3.3	Rheologie der ACA-Schmelzklebstoffdispersionen	. 103
		6.3.4	Leitfähigkeits-Messungen der Übergangswiderstände	. 104
	6.4	Ergebn	isse des Schablonendrucks von ACA-Schmelzklebstoffen	. 106
	6.5	Entwic	klung Flip-Chip-Montage mit Schmelzklebstoffen	. 107
		6.5.1	Allgemeine Prozessbeschreibung RFID-Fertigung	. 109
		6.5.2	Wärmestromführung in der Flip-Chip-Montage	. 110
		6.5.2.1	Wärmeübertragung im Fügeprozess	. 110
		6.5.2.2	Anordnung der Schmelzklebstoffdepots im Wärmestrom	. 111
		6.5.2.3	Abkühlen der Fügeverbindung	. 112
		6.5.2.4	Schlussfolgerungen zur Wärmestromführung	. 114
		6.5.3	Entwicklung einer angepassten Prozessführung	. 115
		6.5.4	Fügeparameteroptimierung der Flip-Chip-Montage	. 116
	6.6	Funktio	onstest an Smart Label-Komponenten	. 119
		6.6.1	Testaufbau: Mifare	. 120
		6.6.2	Messaufbau: I-Code SLI	. 120
		6.6.3	Messung der Übergangswiderstände an RFID-Testaufbauten	. 121
		6.6.4	Lesereichweiten-Messung	. 122
		6.6.5	Zuverlässigkeitstests	. 124
		6.6.5.1	Klimalagerung	. 125
		6.6.5.2	Schliffbilder	. 127

	6.7	Fazit des Einsatzes von modifizierten Schmelzklebstoffen	
		in der Direktmontage	128
7.	. Zusammenfassung und Ausblick		
	7.1	Zusammenfassung	130
	7.2	Ausblick	133
8.	Lite	eraturverzeichnis	136
9.	. Anhang		
	9.1	Versuchsplan Taguchi	142
	9.2	Abkürzungsverzeichnis Schmelzklebstoffsysteme	143
10	١.	Eigene Veröffentlichungen	144