
Kai Deng

Adaptive Online Energy Management 
Controls for Fuel Cell and Battery Hybrid 
Vehicles

Ka
i D

en
g

Band 51Aa
ch

en
er

 S
ch

rif
te

nr
ei

he
 z

ur
 E

le
kt

ro
m

ag
ne

tis
ch

en
 E

ne
rg

ie
w

an
dl

un
g

Hydrogen energy is highly promising in the search for clean, efficient and environmentally friendly 
energy sources. The development and application of hydrogen energy is a specific implementation of 
the vision of a hydrogen energy society. In the field of transportation, hydrogen energy systems can 
play an important role. Hereby, vehicles powered by fuel cell systems are an alternative to conventi-
onal vehicles. In order to improve overall energy efficiency and reduce operational costs during the 
driving life, the control of vehicle motion, energy management of the powertrain and the lifetime of the 
components are essential. In this thesis, the control of a hybrid drive system consisting of hydrogen-
driven fuel cells and batteries is studied based on a railway vehicle. The main contributions are the 
proposed two strategies, namely model predictive control based strategy and deep reinforcement 
learning strategy, to cope with different driving scenarios to achieve a rational distribution of energy 
in the hybrid drive system, taking into account eco-driving and fuel cell aging.
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Abstract

Hydrogen energy is one of the most promising energy sources of the future,
and its use in transportation is thought to lead to revolutionary zero-pollution
environmental improvements. Therefore, hybrid systems utilizing hydrogen
fuel cells and batteries are a focal point of transportation electrification.
Because of their significantly longer driving range, higher power and faster
charging speed, fuel cell hybrid systems are considered both more environ-
mentally friendly than conventional powertrains and more reliable than
pure battery electric drives for heavy-duty transportation. However, hybrid
systems due to more than one energy source inevitably involve energy man-
agement issues. The energy management strategy (EMS) has a huge impact
on the performance of any hybrid powertrain, as it determines the operating
point of almost all the components associated with the powertrain. As a
result, there are a number of objectives that must be considered from a com-
plete vehicle perspective, and these factors often include fuel consumption,
energy efficient driving, and component aging. For fuel cell and battery
hybrid electric railway vehicles, the major research case for this work, the
EMS must not only minimize hydrogen consumption and maintain sustained
battery charge, but also try to take advantage of the route information such
as speed limitations and slope profile to enhance energy efficient driving,
adapt to disturbances, and maximize fuel cell lifetime. Of note is that fuel
cell aging is one of the major barriers to commercial use of fuel cell systems.

In this work, the influencing factors are considered together by multi-
objective optimization methods in order to reduce the operational costs of
a fuel cell hybrid system in a comprehensive way. However, disturbances
such as temporary speed limits and passenger loads are random in realistic
driving situations, which leads to uncertainty in the load power. Although
the use of route information can bring enhancements as assisted driving is
developing, drivers still have to make independent decisions in unexpected
situations at this stage. So far, no complete solution has been proposed in the
literature. Therefore, a solution is provided here with two new strategies that
complement each other to solve the above-mentioned energy management
problem.

As the first strategy, a hierarchical structure with model predictive
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Abstract

control (MPC) is proposed using the route information. It transforms the
problem mathematically, performs rational expression of the objective and
solves the control strategy from far to near in multi-level prediction horizons.
As the focus regarding the energy distribution, a Pontryagin’s Minimum
Principle (PMP)-based MPC strategy is developed in which the component
constraints are considered internally in the controller, solving the difficulty
of handling constraints such as SoC limitations in the PMP strategies. The
equivalent cost derived from the PMP is used in the cost function, where the
power consumption of the battery is rationally transformed into hydrogen
consumption. In addition, a weight of fuel cell power increments to manage
fuel cell power fluctuations is introduced considering the aging of the fuel
cell.

As the second strategy, which performs as a complementary strategy to
the case of insufficient or no timely route information, a deep reinforcement
learning (DRL)-based EMS is proposed to train neural networks using a
large amount of training data. It improves the value of a pre-defined reward
function containing the optimization objective and builds its adaptability,
where the latest deep reinforcement learning method, twin delayed deep
deterministic policy gradient (TD3), is integrated into the EMS for the
first time up to now. In order to achieve a near-realistic simulation and to
overcome overfitting problem, several settings in the reward function and
training environment are taken.

A new operation-based fuel cell aging estimation model is presented to
evaluate the fuel cell aging. The model is developed based on measured
data and is suitable for energy management use. It provides an estimate of
voltage degradation based on the input fuel cell power.

Finally, several simulative validation and hardware-in-the-loop tests of
the studied strategies is performed for different factors. The results showed
that the proposed strategy can save from 14 % to 40 % of the operational
cost compared to several conventional strategies, and can meet various
design requirements such as sustainable battery charging and constraint
compliance. The test results in the hardware-in-the-loop test bench shows
the expected results as simulation and prove the ability of strategies to
operate in real-time environments.
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