Elektrotechnik

Nathan Tröster

Erfassung von hochdynamischen Kommutierungsströmen in der Leistungselektronik

Erfassung von hochdynamischen Kommutierungsströmen in der Leistungselektronik

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

> Vorgelegt von Dipl.-Ing. Nathan Joel Tröster geboren in Filderstadt

Hauptberichter: Mitberichter: Tag der mündlichen Prüfung: Prof. Dr.-Ing. J. Roth-Stielow Prof. Dr. J. Anders 10. März 2023

Institut für Leistungselektronik und Elektrische Antriebe der Universität Stuttgart

2023

Berichte aus der Elektrotechnik

Nathan Tröster

Erfassung von hochdynamischen Kommutierungsströmen in der Leistungselektronik

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2023

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9132-8 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de Meiner Familie

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als akademischer Mitarbeiter am Institut für Leistungselektronik und elektrische Antriebe der Universität Stuttgart.

Besonders herzlich möchte ich mich bei Herrn Professor Dr.-Ing. Jörg Roth-Stielow für die Anregung, die Betreuung und die stetige Förderung dieser Arbeit bedanken. Weiterhin bedanke ich mich für die zahlreichen Diskussionen und die wertvollen Ratschläge. Herrn Professor Dr. Jens Anders danke ich für die freundliche Übernahme des Mitberichts.

Bei allen meinen Kollegen, mit denen ich während meiner Zeit am Institut zusammenarbeiten durfte, möchte ich mich ganz herzlich für die Unterstützung, die zahlreichen, wertvollen Diskussionen und die konstruktive Kritik bedanken. Die kollegiale, freundschaftliche Atmosphäre empfand ich als sehr angenehm. Sie wird mir in sehr guter Erinnerung bleiben.

Frau Evelin Eiselt danke ich für die Erstellung der Abbildungen sowie den grafischen Anregungen. Den Mitarbeitern der mechanischen Werkstatt danke ich für die Umsetzung der mechanischen Aufbauten und den technischen Diskussionen. Meiner Frau Tatjana Tröster, meinem Bruder Mark Tröster und meinen Kollegen Dr.-Ing. Julian Wölfle, Dr.-Ing. Manuel Fischer und Johannes Ruthardt, M.Sc. danke ich ganz herzlich für die kritische Durchsicht meines Manuskriptes.

Des Weiteren danke ich allen Studierenden, die im Rahmen ihrer studentischen Arbeiten zu dieser Arbeit beigetragen haben.

Meiner gesamten Familie, die mir mein Studium ermöglicht hat und mich bei meiner Promotion moralisch wie inhaltlich unterstützt hat, möchte ich ganz herzlich danken.

Stuttgart, im April 2023

Nathan Joel Tröster

Inhaltsverzeichnis

V	orwort		7
V	erzeichnis	s der verwendeten Formelzeichen und Abkürzungen	12
K	urzfassun	g	17
A	bstract		19
1	1 Einleitung		
	1.1 Stro	mmessung in der Leistungselektronik	22
	1.1.1	Laststrommessung	22
	1.1.2	Kommutierungsstrommessung	23
	1.2 Mot	ivation, Zielsetzung und Vorgehensweise	26
2	Anfor	derungen an einen Stromsensor	27
	2.1 Ban	dbreite des Stromsensors	
	2.1.1	Tiefpass erster Ordnung	
	2.1.2	Tiefpass zweiter Ordnung	34
	2.1.3	Übertragungsverhalten eines Shunts	
	2.1.4	Fazit zur Bandbreite des Stromsensors	
3	Messp	rinzipien	42
	3.1 Pote	entialgebundene Strommessung	43
	3.2 Beri	ührungslose Strommessung	47
	3.2.1	Magnetfeldsensoren	47
	3.2.2	Transformator	55
	3.2.3	Rogowski-Spule	59
4	Stand	der Technik	64
	4.1 Stro	mmessung mit Widerständen	64
	4.1.1	Koaxialshunt	65
	4.1.2	M-Shunt	66
	4.1.3	SMD-Shunt	67

	4.2 Stro	mmessung über das Magnetfeld	68
4.2.1		Hochfrequenz-Transformator	68
	4.2.2	Rogowski-Spule	69
	4.2.3	Kompensationsstromwandler	74
	4.2.4	Kombination von Sensorprinzipien	75
	4.3 Übe	rsicht verfügbarer Stromsensoren	81
5	Konze	pt eines Stromsensor	84
	5.1 Nied	lerfrequente Erfassung	87
	5.1.1	Auswahl des Magnetfeldsensors	
	5.1.2	TMR-Sensor und die Signalauswertung	89
	5.2 Hoc	hfrequente Erfassung	93
	5.2.1	Auslegung der Rogowski-Spule	93
	5.2.2	Auslegung des kernlosen Transformators	102
	5.3 Verl	copplung der nieder- und hochfrequenten Erfassung	106
	5.3.1	Umsetzung des HOKA-Prinzips	106
5.3.2		Umsetzung des Eta-Prinzips	
	5.4 Einf	üge-Impedanz	111
	5.5 Verg	gleich der beiden Messprinzipien	115
	5.6 Integ	gration des Stromsensors in eine Halbbrücke	117
6	Evalua	ntion	119
	6.1 Refe	renz	119
	6.1.1	Hochfrequenz-Transformator	119
	6.1.2	Koaxialshunt	120
	6.2 Stro	msensor	126
	6.2.1	Amplitudengang	126
	6.2.2	Gleichstrommessung	127
	6.2.3	Messung der Einfüge-Impedanz	128
	6.2.4	Messung der Koppelkapazität und Spannungsfestigkeit	129
	6.2.5	Impulsstrommessungen	130

	6.2.6	Doppelimpulstest	133
	6.2.7	Einfluss des Stromsensors	139
	6.2.8	Zusammenfassung der Messergebnisse	140
7	Zusan	nmenfassung und Ausblick	141
Lite	eraturvo	erzeichnis	143
Leb	enslauf	·	150

Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Symbol	Einheit	Bedeutung
A	m ²	Fläche
A_{Hall}	m ³ /C	Hall-Konstante / Hall-Koeffizient
A_{Wind}	m ²	Querschnitt einer Windung
В	Т	magnetische Flussdichte
$b_{\rm AMR}$	m	Breite des AMR-Elements
Ск	F	Koppelkapazität
C_{Komp}	F	Kapazität einer Kompensationsschaltung
Cs	F	parasitäre Kapazität eines Shunts
C_{W2}	F	sekundärseitige Wicklungskapazität
d	-	Dämpfung
D	Asm ⁻²	elektrische Flussdichte
$d_{\rm AMR}$	m	Dicke des AMR-Elements
$d_{ m Hall}$	m	Dicke des Hallelements
Ε	Vm^{-1}	elektrische Feldstärke
$f_{ m g}$	Hz	Grenzfrequenz
$f_{ m g,1\%}$	Hz	Grenzfrequenz für einen 1-prozentigen Fehler
$f_{ m g,3\%}$	Hz	Grenzfrequenz für einen 3-prozentigen Fehler
$f_{ m g,o}$	Hz	obere Grenzfrequenz
$f_{ m g,PT1}$	Hz	Grenzfrequenz eines Tiefpasses erster Ordnung
$f_{ m g,PT2}$	Hz	Grenzfrequenz eines Tiefpasses zweiter Ordnung
$f_{ m g,S}$	Hz	Grenzfrequenz eines Shunts
$f_{ m g,u}$	Hz	untere Grenzfrequenz
$F_{\rm HOKA}$	-	Frequenzgang des HOKA-Prinzips
$F_{\rm L}$	Ν	Lorentzkraft
F_{max}	-	Maximaler relativer Messfehler
$F_{\rm PT1}$	-	Frequenzgang eines Tiefpasses erster Ordnung
$F_{\rm PT2}$	-	Frequenzgang eines Tiefpasses zweiter Ordnung
$F_{\rm R,PT1}$	-	Relativer Messfehler eines Stromsensors (PT1-Verhalten)

Formelzeichen und physikalische Größen

F _{R,PT1,x}	-	Relativer Messfehler eines Stromsensors (PT1-Verhalten, x
		gibt die Auslegung des Tiefpasses an)
$F_{\rm R,PT2}$	-	Relativer Messfehler eines Stromsensors (PT2-Verhalten)
Fr,pt2,x	-	Relativer Messfehler eines Stromsensors (PT2-Verhalten, x
		gibt die Auslegung des Tiefpasses an)
$f_{\rm res}$	Hz	Resonanzfrequenz
F_{Rog}	-	Frequenzgang einer Rogowski-Spule
$F_{\rm SM}$	-	Frequenzgang eines Magnetfeldsensors
F_{S}	-	Frequenzgang eines Shunts
F_{Se}	-	erweiterter Frequenzgang eines Shunts
F_{Trafo}	-	Frequenzgang eines Transformators
Η	A/m	Magnetische Feldstärke
Hsat	A/m	Magnetische Sättigungsfeldstärke
H_y	A/m	Magnetische Feldstärke in y-Richtung
Ι	А	Gleichstrom
i	А	Strom
i_1	А	primärseitiger Strom
<i>i</i> ₂	А	sekundärseitiger Strom
iв	А	Strom durch den Bürdenwiderstand
$i_{ m F}$	А	Fehlerstrom
<i>İ</i> m,PT1	А	Messstrom eines Stromsensors (PT1-Verhalten)
<i>İ</i> m,PT1,x	А	Messstrom eines Stromsensors (PT1-Verhalten, x gibt die
		Auslegung des Tiefpasses an)
<i>i</i> _{m,PT2}	А	Messstrom eines Stromsensors (PT2-Verhalten)
<i>i</i> _{m,PT2,x}	А	Messstrom eines Stromsensors (PT2-Verhalten, x gibt die
		Auslegung des Tiefpasses an)
i _{m,S}	А	Messstrom eines Shunts
i _{m,S,x}	А	Messstrom eines Shunts (x gibt die Auslegung des Shunts
		an)
i _{m2}	А	sekundärseitiger Magnetisierungsstrom
Imax	А	Amplitude eines Stromimpulses
i _{mess}	А	Messstrom

14		
I_{P}	А	Maximaler Gleichstromwert des Impulses
J	Am ⁻²	Stromdichte
$K_{\rm SM}$	-	Verstärkungsfaktor eines Magnetfeldsensors
L	Н	Induktivität
L_2	Н	sekundärseitige Eigeninduktivität
$l_{\rm AMR}$	m	Länge des AMR-Elements
$L_{\rm H2}$	Н	auf die Sekundärseite bezogene Hauptinduktivität
$L_{\rm S}$	Н	Parasitäre Induktivität eines Shunts
$L_{\sigma 2}$	Н	sekundärseitige Streuinduktivität
М	Am ⁻¹	Magnetisierung
M	Н	Gegeninduktivität
$M_{\rm X}$	Am ⁻¹	Magnetisierung in x-Richtung
n	-	Ladungsträgerdichte
q	С	elektrische Ladung
R	Ω	Ohm'scher Widerstand
$R_{\rm AMR}$	Ω	Ohm'scher Widerstand eines AMR-Elements
$R_{\rm AMR,BP}$	Ω	Ohm'scher Widerstand eines AMR-Elements eines Bar-
		ber Pols
$R_{\rm AMR,max}$	Ω	Maximalwert des ohmschen Widerstands eines AMR-Ele-
		ments
$R_{\rm AMR,min}$	Ω	Minimalwert des ohmschen Widerstands eines AMR-Ele-
		ments
$R_{\rm B}$	Ω	Bürdenwiderstand
R_{Bg}	Ω	Minimaler Bürdenwiderstand einer Rogowski-Spule
R_{Cu2}	Ω	sekundärseitiger Kupferwiderstand
R_{Fe2}	Ω	auf die Sekundärseite bezogener Eisenwiderstand
$R_{\rm GMR}$	Ω	Ohm'scher Widerstand eines GMR-Elements
$R_{\rm GMR,max}$	Ω	Maximalwert des ohmschen Widerstands eines GMR-Ele-
		ments
$R_{ m GMR,min}$	Ω	Minimalwert des ohmschen Widerstands eines GMR-Ele-
		ments
R_{Komp}	Ω	Ohm'scher Widerstand einer Kompensationsschaltung

Rs	Ω	Ohm'scher Widerstand eines Shunts
S	m	Strecke
t	S	Zeit
T_1	S	Zeitkonstante Verzögerungsglied erster Ordnung
t_1	S	Zeitverzögerung bis zum Anstieg des Stromes
T_2	S	Zeitkonstante Verzögerungsglied zweiter Ordnung
$t_{\rm f}$	S	Abfallzeit
$T_{\rm P}$	S	Pulsdauer
$T_{\rm PT1}$	S	Zeitkonstante eines Tiefpasses erster Ordnung
t _r	S	Anstiegszeit
T_{Shunt}	S	Zeitkonstante eines Shunts
$T_{\rm SM}$	S	Zeitkonstante eines Magnetfeldsensors
и	V	Spannung
u_1	V	Spannung primärseitig
u_2	V	Spannung sekundärseitig
$U_{\rm DC}$	V	Gleichspannung
$U_{\rm AC}$	V	Wechselspannung
U_{Hall}	V	Hall-Spannung
$Z_{\rm M}$	Ω	Impedanz mit Sensor-Gehäuse
Zo	Ω	Impedanz ohne Sensor-Gehäuse
$u_{ ext{ind}}$	V	induzierte Spannung
$u_{ m Komp}$	V	Kompensationsspannung
$u_{ m L}$	V	Spannung über einer Induktivität
$u_{\rm LS}$	V	Spannung über der parasitären Induktivität eines Shunts
$u_{ m Rog}$	V	Ausgangsspannung einer Rogowski-Spule
$u_{\rm RS}$	V	Spannung über dem ohmschen Widerstand eines Shunts
$u_{\rm S}$	V	Spannung über einem Shunt
$u_{\rm SM}$	V	Ausgangsspannung eines Magnetfeldsensors
ν	ms ⁻¹	Geschwindigkeit
<i>W</i> 1	-	Windungszahl primärseitig
W2	-	Windungszahl sekundärseitig
ω_0	Hz	Eigenkreisfrequenz

Hz Resonanzkreisfrequenz

Abkürzungen

Abkürzung	Bedeutung
AC	Wechselstrom (engl. alternating current)
AMR	Anisotroper magnetoresistiver Effekt
DC	Gleichstrom (engl. direct current)
DFN	IC-Miniatur Gehäuse (engl. dual flat no-lead)
GaN	Galliumnitrid
GMR	Gigantischer magnetoresistiver Effekt (engl. giant magnetore- sistive effect)
HF	hochfrequent
IC	integrierter Schalkreis (engl. integrated circuit)
NF	niederfrequent
PT1	Tiefpass erster Ordnung
PT2	Tiefpass zweiter Ordnung
SiC	Siliziumcarbid
SLC	Straight Line Coil
TMR	Tunnelmagnetoresistiver Effekt

 $\omega_{\rm r}$

Kurzfassung

Die Entwicklung der Leistungselektronik zeigt in Richtung höherer Leistungsdichten und damit kompakterer Schaltungen. Ermöglicht wird diese Entwicklung unter anderem durch den vermehrten Einsatz von Halbleiterbauelementen aus Siliziumkarbid oder Galliumnitrid anstelle von Silizium. Durch die Verwendung dieser beiden Halbleitermaterialien können Halbleiterbauelemente mit deutlich steileren Schaltflanken, damit sind die Spannungs- und Stromflanken beim Schaltvorgang gemeint, betrieben werden. Die steileren Stromflanken erhöhen die Anforderungen an die Strommessung, insbesondere die Messung der Kommutierungsströme, in Bezug auf eine größere Bandbreite und eine kleinere Einfüge-Induktivität.

In der vorliegenden Arbeit werden die erhöhten Anforderungen an die Messung der Kommutierungsströme vorgestellt und dabei wird ein Zusammenhang zwischen Bandbreite und Anstiegs- bzw. Abfallzeit eines Stromimpulses durch einen Leistungstransistor abgeleitet. Der aktuelle Stand der Technik wird vorgestellt und mit den konkreten Anforderungen an eine Messung des Kommutierungsstromes anhand einer beispielhaften Anwendung verglichen. Dabei wird festgestellt, dass kein Stand-der-Technik-Stromsensor die Anforderungen an eine Kommutierungsstrommessung in Bezug auf Bandbreite und Einfüge-Induktivität ausreichend abdeckt.

Anschließend wird ein skalierbares Konzept zur Lösung des Problems der Messung der Kommutierungsströme vorgestellt. Die Idee ist, den zu messenden Strom durch eine koaxiale Kammer zu führen, um die Einfüge-Induktivität möglichst gering zu halten. Um eine breitbandige Stromerfassung zu ermöglichen, soll das Magnetfeld innerhalb der koaxialen Kammer von zwei Sensoren erfasst werden, die nach unterschiedlichen Prinzipien arbeiten. Die niederfrequenten Anteile des Stromes sollen über Magnetfeldsensoren, in dieser Arbeit mittels tunnelmagnetoresistiver Sensoren, erfasst werden. Die höherfrequenten Anteile sollen mit einer Rogowski-Spule erfasst und mit der niederfrequenten Stromerfassung verkoppelt werden. Das Konzept zur Strommessung wird für einen beispielhaft gewählten Galliumnitrid-Transistor ausgelegt und ein Prototyp mit den benötigten Anforderungen realisiert. Der entwickelte Stromsensor wird charakterisiert und mit zwei Stand-der-Technik-Stromsensoren verglichen. Weiterhin wird ein Doppelimpulstest mit einem Galliumnitrid-Transistor durchgeführt und die Messergebnisse präsentiert. Die erzielten Resultate sind dargestellt und führen zu dem Schluss, dass das entwickelte Konzept eines Stromsensors zur Lösung des Problems der Kommutierungsstrommessung geeignet ist.

Abstract

The development of power electronics points towards higher power densities and thus more compact circuits. This development is made possible, among other things, by the increased use of semiconductor components made of silicon carbide or gallium nitride instead of silicon. By using these two semiconductor materials, semiconductor components can be operated with significantly steeper switching slopes, which means the voltage and current slopes during the switching process. The steeper current slopes lead to an increase of the requirements on current measurement, in particular the measurement of the commutation currents, which means a larger bandwidth and a smaller insertion inductance.

In this work, the increased requirements for the measurement of the commutation currents are presented and a relationship between the bandwidth and the rise or fall time of a current pulse through a power transistor is derived. The state-of-the-art-measuringmethod is presented and compared with the specific requirements for a measurement of the commutation current based on an exemplarily chosen application. Although a deficit of the current sensors in regard of measuring commutation currents has been detected. No state of the art current sensor satisfies the requirements in terms of bandwidth and insertion inductance.

Subsequently, a scalable concept for measuring the commutation currents is presented. The idea is to guide the current to be measured through a coaxial housing to minimize the insertion inductance. The magnetic field within the coaxial chamber shall be detected by two sensor principles, to enable broadband current detection. The low-frequency components of the current within the coaxial chamber is detected by magnetic field sensors using the tunnel magnetoresistive principle. The high-frequency components are detected with a Rogowski coil and coupled with the low-frequency current detection. The concept for current measurement is designed for an exemplarily selected gallium nitride transistor and a prototype is realized, which fulfills the requirements. The developed current sensor is compared and characterized with two state of the art current sensors. Furthermore, a double-pulse test with the gallium nitride transistor is carried out. The obtained results are presented and lead to the conclusion that the developed current sensor concept for measuring commutation currents represents a promising option for

solving the challenge.