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Preface

The design of efficient controllers for nonlinear plants can be problematic because of chal-
lenges related to real world applications and limitations imposed by some assumptions or some
complicated approaches hard to apply for practitioners. Different approaches are also needed to
simultaneously handle several potential issues without any unnecessary additional energy usage
and with improved control performances.

This book is a revised and extended version of our PhD thesis realized at the Institute of Smart
Systems Technologies of the University of Klagenfurt, in Austria. It presents the design of ef-
ficient adaptive nonlinear controllers for some real world engineering applications. The design
approaches presented here take into account multiple challenges for increased safety and reli-
ability. Multiple adaptive nonlinear control schemes are presented, which are relatively easy to
apply for practitioners and are able to tackle simultaneously and efficiently some and/or all of the
following issues : external disturbances, uncertain dynamics, actuation faults, unmeasured states,
constrained input, unknown control direction, and singularity in the control law. The book presents
the design of multiple control schemes mainly based on Radial Basis Function Neural Networks
(RBFNN) or Fuzzy Neural Networks (FNNs). For each design example, the book provides appli-
cations and MATLAB codes or SIMULINK models for simulation.

This book, through its eight chapters, intends to disseminate more knowledge about the design
processes that can suitably be applied to various control engineering problems. In this book, we

want to achieve the following objectives :

» Present simple design approaches for adaptive controllers for a general class of nonlinear SISO
or MIMO systems of any order, which can be readily applied by practitioners.

+ Present some design approaches for control schemes able to :

— accommodate simultaneously issues related to uncertain nonlinear dynamics, unavailable
full-state measurement, unknown control direction, external disturbances, constrained in-
put, actuator faults (affine or non-affine, linear or nonlinear, constant or time-varying faults
especially gain faults or partial loss of effectiveness faults, bias faults, complex faults;

— guarantee singularity avoidance in the control law, uncertain dynamics approximation errors

compensation, and control signal features improvement (low amplitude, low frequency).



Present how a larger scope of potential applications can be enabled by relaxing assumptions
found in most of the published works about the knowledge of the upper and lower bounds
of the perturbations (uncertain dynamics, external disturbances, and actuation faults) and the
assumption about the positive-definiteness of the control gain function and the knowledge of
its bounds and/or its sign.

Show how the designed control schemes grant the achievement of control objectives with better
transient and steady state performances (no peak overshoot, short settling time, small steady
state error bounds, small RMSE, and faster restoration of the system performances after the
occurrence of an actuator failure) and enable an easy implementation for practical applications

(no chattering phenomenon, low energy consumption).

For the sake of an easy exploitation of the book by readers, the contents of each chapter are

independent, as all the necessary information needed for its understanding is provided therein.

The book is structured as follows:

1.

In Chapter 1 of the book, some basic knowledge/tools needed to understand the concepts
presented in this book are provided. The reader is introduced to feedback linearizable nonlinear
systems. An overview of feedback linearization and the general principle of feedback controllers
design are presented as well. As an example, a feedback controller design is presented for a

Chua’s chaotic circuit synchronization or output tracking.

. Chapter 2 introduces a series of fundamentals of the traditional Sliding Mode Control (SMC)

as a complementary tool for adding the robustness aspect to the feedback controller presented
in Chapter 1. This chapter also provides a short description of neuro-fuzzy architectures and
some basics about FNNs. An uncertain and disturbed Duffing’s system chaos control problem
is used to illustrate the design of an adaptive reaching law-based sliding mode controller using

a FNN. The simulation of the controlled Duffing’s chaotic system is presented with the results.

. Chapter 3 presents a design approach for adaptive controllers for nonlinear strict-feedback

systems subject to both external disturbances and uncertain dynamics issues. This approach
is based on a FNN and uses a reaching law-based SMC approach combined with the Input
Output Feedback Linearization technique. Two 3D chaotic systems, a one-link robot manipu-
lator with a brush DC motor are simulated with the designed controllers in order to show how
they easily tackle the external disturbances, the uncertainty, the FNN approximation errors and
the singularity issues efficiently when compared to some intelligent control schemes proposed

in the literature for the same class of nonlinear systems.

. In Chapter 4, the book presents a nonlinear control scheme incorporating a FNN, a state ob-

server, and a Naussbaum type function. The presented scheme cancels the assumption about



i
the knowledge of the control gain sign and the knowledge of the disturbance, the actuation
fault and the FNNs approximation errors’ upper bounds considered in many existing works. Ap-
plication examples are presented for the Boeing 747-100/200 pitch angle control, the inverted
pendulum control, and the one-link robot manipulator with a brush DC motor.

5. Chapter 5 presents a particular case of an adaptive nonlinear controller for the Unmanned Sur-
face Vehicle Steering System by using a high-gain state observer and a Radial Basis Function
Neural network (RBFNN). The controller is designed such that it is fault-tolerant.

6. Chapter 6 addresses the control problem of a 5-DOF exoskeleton robot with uncertain dynam-
ics, unmeasured states and actuation faults. The simulation results of the control system are
presented as well.

7. The design and simulation of an adaptive Neural-Network-based Nonlinear fault-tolerant con-
troller of a disturbed Unmanned Aerial Vehicle (UAV) are presented in Chapter 7.

8. In Chapter 8 we present the design of a nonlinear controller for a 3-axis MEMS Gyroscope

with its simulation.

In each chapter, for each design example, we provide the MATLAB code and the SIMULINK
model (where needed) giving the presented simulation results. These codes and models are
provided by assuming that they can be exploited by readers with at least some basic knowledge
about MATLAB and SIMULINK.

Klagenfurt, Austria, Baraka Olivier Mushage



Abstract

For many decades, the scientific community has devoted a tremendous amount of attention
to the design of efficient controllers for nonlinear plants, which can be problematic because of
challenges related to real world applications. However, there is still a need for addressing some
issues that remain not clearly solved related to limitations imposed by some assumptions or some
complicated approaches hard to apply for practitioners. There is also a need for approaches able
to handle simultaneously several potential issues without any unnecessary additional energy us-
age and with improved control performances. Therefore, this book presents the design of efficient
adaptive nonlinear controllers for strict-feedback nonlinear systems by taking into account mul-
tiple challenges for increased safety and reliability. The considered challenges are external dis-
turbances, uncertain dynamics, actuation faults, unmeasured states, constrained input, unknown
control direction, and singularity in the control law. Some adaptive nonlinear control schemes,
which are relatively easy to apply for practitioners in order to tackle simultaneously and efficiently
some and/or all aforementioned issues are presented. The book presents the design of schemes
based on a reaching law-based Sliding Mode Control strategies, combined with the Input-Output
Feedback Linearization technique. These schemes use Radial Basis Function Neural Networks
(RBFNN) and Fuzzy Neural Networks (FNNs) to approximate the unknown system dynamics. It is
illustrated how a model-free high-gain state observer is employed for estimating the unavailable
system state variables. For dealing with the unknown control direction, a Nussbaum type function
is presented. The schemes presented in this book have a wide scope of potential applications
as they overcome important restrictions imposed by some assumptions found in many works,
while ensuring very good transient and steady state performances (no peak overshoot, shorter
settling time, smaller error bound and Root-Mean-Square-Error) with low leveled continuous con-
trol efforts. These canceled restrictions are the requirements about the knowledge of bounds for
system dynamics uncertainties, for RBFNN or FNN approximation errors, for actuator’s faults and
for external disturbances, the knowledge of control direction, the availability of full-state measure-
ment, and the requirement about the positive-definiteness of the control gain function with known
lower and upper bounds.

Nonlinear controllers are designed for some particular engineering applications like
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+ the Boeing 747-100/200 pitch angle of attack control, the tracking control of an inverted pendu-
lum

+ a 3D chaotic system synchronization

« the tracking control of a one-link manipulator with DC motor

« the control of an Unmanned Surface Vehicle Steering System

+ the control of a 5 DOF upper-limb exoskeleton robot for assisted rehabilitation therapy

+ the control of a disturbed Unmanned Aerial Vehicle (UAV)

+ the control of a 3-axis MEMS Gyroscope

Simulation results for these application examples are provided with the corresponding MATLAB
codes/SIMULINK models and compared with those reported in the literature where other adaptive
schemes have been applied to the same systems so that the reader can easily see the validation

of the control schemes presented in this book.
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Glossary

Throughout this book, lowercase letters represent scalars, bold lowercase letters represent vec-

tors, and bold uppercase letters represent matrices.

sign(z)

sat(z)

Lyh(x)
[f(x), 8(x)]

< <

a scalar

a vector

a scalar function

a vector function
modulus of vector x

first, second and ith time derivative of x: 2%, 4x 4x

set of real numbers

set of positive real numbers
n-dimensional real vector space
column vector of n ones

set of natural numbers

) ) ) . +1foraz >0
signum or sign function, sign(z)=
—1forz <0
1 forz>1

saturation function, sat(z)=¢ z for -1 <z <1

—1lforz < -1
vector differential operator, for x = [z, z2, - - -, z,])7 € R,
— a 9 15
V= [8:1:1 dzy m,,]

Lie derivative of h(x) with respect to f, Lsh(x) = Vh(x) - f
Lie bracket of f(x) and g(x) (other notation ad;g(x))
Lyapunov candidate function

for all

xiii
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i )
argmin f(x)
[/l
A2
span{-}
CA
COA
DAC
DC
DCOG
DOF
DSP
FDD
FLS
FNN
FNNASMC
FOSMC
FPGA
FT

FTC
HVDC
IAC

IOFL
MEMS
MIMO
MISO
NEFCON
NN
ODE
QANFTC
RBFNN
RMSE
RQ
SAFNC

Contents

maximum value of f(x) with respect to its argument x € 2
value of x € {2 for which f(x) attains it's minimum
Euclidean norm or 2—Norm of vector x (||x|| = vx7x)
norm of matrix A € R™ (|A||? = tr [ATA])

span of vectors

Center Average

Center of Area

Direct Adaptive Control

Direct Current

Discrete center of gravity

Degree Of Freedom

Digital Signal Processor

Fault Detection and Diagnosis

Fuzzy Logic System

Fuzzy Neural Network

Fuzzy Neural Network Adaptive Sliding Mode Controller
First Order Sliding Mode Control

Field Programmable Gate Arrays

Fault-Tolerant

Fault Tolerant Control

High Voltage Direct Current

Indirect Adaptive Control

Input-Output Feedback Linearization
Micro-Electro-Mechanical System
Multiple-Input-Multiple-Output
Multiple-Input-Single-Output

Neural Fuzzy Controller

Neural Network

Ordinary Differential Equation

Quadrotor Adaptive Nonlinear FTC

Radial Basis Function Neural Network
Root-Mean-Square-Error

Research question

Self-organizing Adaptive Fuzzy Neural Control
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SOSMC Second Order Sliding Mode Control
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TA Twisting Algorithm

TS Takagi-Sugeno

TV Total Variation

UAV Unmanned Aerial Vehicle

usv Unmanned Surface Vehicle

VSC Voltage Source Converter
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