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Summary

Low temperature cofired ceramic (LTCC) is a technology that distinguishes
itself from conventional technologies such as printed circuit boards (PCBs)
based on flame retardant (FR-4) or polytetrafluoroethylene (PTFE) substrate
materials by means of higher permittivities, lower dielectric losses, and im-
proved thermal performance. Its manufacturing process allows for the prepa-
ration of individual sheets and subsequent stacking, lamination, and finally
firing into multilayer substrates with high dimensional accuracy. The abil-
ity to embed active or passive components between layers and form cavities
enables a high degree of integration, thus making LTCC a viable packaging
solution for a variety of electronic systems.

To this end, vertical interconnect accesses (vias), which are typically used
to electrically connect traces or planes located on different layers, are deployed
as functional elements for the design of vertically integrated microwave com-
ponents. Functional via structures do not support transverse electromagnetic
(TEM) modes but effectively behave like quasi-transmission lines up to 40 GHz
for most practical purposes if designed properly. In this work, vertical integra-
tion is applied to a variety of passive microwave components including low- and
band-pass filters, 90° and 180° hybrid couplers, and N-way Wilkinson power
dividers. The analysis for each component is comprised of the delineation of
the design procedure, full-wave simulations, and lastly measurements up to
50 GHz of the manufactured prototype. The study is completed by examining
the limiting case of via arrays, where many signal vias are in close proxim-
ity to each other, which gives insight into maximum coupling and crosstalk
behavior.

The utilization of the vertical dimension essentially grants circuit designers
an additional degree of freedom not offered by planar microstrip or stripline
technology. Furthermore, the reduced footprint and smaller form factor due
to three-dimensional (3-D) integration implies shorter electrical lengths and
enhanced performance.
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