Dresdner Berichte zur Messsystemtechnik

Herausgeber: Prof. Dr.-Ing. habil. Jürgen Czarske

18

Florian Bürkle

Untersuchung interferometrischer Messtechniken zur hochauflösenden Geschwindigkeitsund Temperaturprofilmessung für Fluide in Brennstoffzellen

Technische Universität Dresden

Untersuchung interferometrischer Messtechniken zur hochauflösenden Geschwindigkeits- und Temperaturprofilmessung für Fluide in Brennstoffzellen

Florian Bürkle, M. Sc.

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: 1. Gutachter: 2. Gutachter:

Prof. Dr.-Ing. A. Richter Prof. Dr.-Ing. habil. J. Czarske Prof. Dr.-Ing. C. Cierpka Prüfer/Mitglied: Prof. Dr.-Ing. habil. U. Hampel

Tag der Einreichung: 18.07.2022 Tag der Verteidigung: 08.12.2022

Dresdner Berichte zur Messsystemtechnik

Band 18

Florian Bürkle

Untersuchung interferometrischer Messtechniken zur hochauflösenden Geschwindigkeitsund Temperaturprofilmessung für Fluide in Brennstoffzellen

> Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2022

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8951-6 ISSN 1866-5519

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand an der Professur für Mess- und Sensorsystemtechnik der Technischen Universität Dresden. Meinen besonderen Dank möchte ich dem Lehrstuhlinhaber und meinem Doktorvater Prof. Dr.-Ing. habil. Jürgen Czarske aussprechen, der mir die Durchführung dieser Arbeit an seinem Lehrstuhl ermöglicht und mich mit zahlreichen hilfreichen Hinweisen und Ratschlägen unterstützt hat. Weiterer Dank gebührt meinem Gruppenleiter Dr. Lars Büttner, der mir stets mit fachlichem Rat zur Seite stand und durch Einwerben der bearbeiteten Projekte den Grundstein dieser Arbeit gelegt hat. Dank geht auch an Prof. Dr.-Ing. Christian Cierpka für die freundliche Übernahme meines Koreferats.

Besonderer Dank geht auch an mein Kollegium, welches immer für fruchtbare Diskussionen bereit stand und nicht nur während der Arbeitszeit für mich da war. Besonders erwähnen möchte ich meinen ehemaligen Kollegen Dr.-Ing. Hannes Radner, dessen Wissensschatz und Kreativität schier unendlich scheinen und der mir oftmals den entscheidenden Rat lieferte. Für die geduldige Einarbeitung in die Thematik möchte ich meinem ehemaligen Kollegen Christian Schober danken. Weiterer Dank geht an Dr.-Ing. Nektarios Koukourakis und Dr.-Ing. Felix Schmieder, mit denen der Austausch stets spannend und unterhaltsam war und durch die mein musikalischer Horizont erweitert wurde.

Ich möchte der Deutschen Forschungsgemeinschaft für die Förderung des Projekts BU 2241/4-1 danken, welche die finanziellen Mittel für diese Arbeit bereitstellte. Dabei möchte ich auch den Projektpartnern, insbesondere Dr.-Ing. Michael Dues, für die produktive Zusammenarbeit danken. Ebenso möchte ich der Arbeitsgemeinschaft industrieller Forschungsvereinigungen und dem Bundesministerium für Wirtschaft und Klimaschutz für die Förderung des IGF-Vorhabens 18233 BG danken. Der Dank geht auch an die Projektpartner der ZBT GmbH, allen voran Florine Moyon, für die gelungene Kooperation und tolle Ergebnisse.

Zu guter Letzt möchte ich mich bei meiner Familie und FreundInnen für die bedingungslose Unterstützung vor und während meiner Promotionszeit bedanken. Ohne eure Hilfe wäre mein Weg bis zum Ende dieser Arbeit sicher nicht möglich gewesen.

Kurzfassung

Die Kenntnis der in technischen, biologischen oder medizinischen Prozessen vorliegenden Strömung erlaubt einen Einblick in die zu Grunde liegenden physikalischen und chemischen Vorgänge, beispielsweise in Brennstoffzellen, Lab-on-a-Chip-Systemen, Nasskupplungen, thermischen Schichtspeichern oder Bioreaktoren. In all diesen Beispielen finden sich Strömungen in engen Kanäle (d < 1 mm), mit großen Geschwindigkeitsgradienten und Temperaturunterschieden, bei deren Messung eine hohe Ortsauflösung, eine niedrige Geschwindigkeitsunsicherheit und ein hoher Arbeitsabstand erforderlich sind. Zur Untersuchung thermischer Effekte ist die zusätzliche Erfassung der Temperatur nötig.

Ein Messsystem, welches eine hohe Ortsauflösung und eine geringe Geschwindigkeitsunsicherheit vereint, ist der Laser-Doppler-Geschwindigkeitsprofilsensor (LDV-PS). Dieser stellt eine Erweiterung des konventionellen Laser-Doppler-Velozimeters dar. Statt nur eines Interferenzstreifenmusters werden im Messvolumen zwei Interferenzstreifenmuster mit charakteristischen Streifenabstandsverläufen überlagert. Diese Mehrfachmessung ermöglicht die Überwindung der heisenbergschen Unschärferelation. Forschungsbedarf besteht noch bei der Temperaturmessung, welche mit dem LDV-PS bisher noch nicht möglich ist, und der Messung in dispersiven Medien, da sich in diesen die Kalibrierung ändert.

Der Aufbau des LDV-PS erfolgt im Zeitmultiplex, d. h. beide Streifensysteme sind abwechselnd aktiv. Ein monochromatischer Aufbau eliminiert Dispersionseffekte bei der Messung in Flüssigkeiten und ermöglicht den Einsatz lumineszierender Streupartikel zur Unterdrückung von Wandreflexen. Dies erlaubt Geschwindigkeitsmessungen von mehreren 10 m/s mit gleichbleibend geringer Messunsicherheit auch bei großem Arbeitsabstand, welche zuvor nicht möglich waren.

Bei Messungen in dispersiven Medien ist ein Übergang der Laserstrahlen von Luft in das dispersive Medium unvermeidbar. Die Kalibrierung im dispersiven Medium wurde in dieser Arbeit durch Berechnung eines Kalibriermodells, welches sowohl geometrische als auch gaußsche Optik beachtet, obsolet. Relative systematische Messabweichungen von bis zu 6,5 %, die durch den Übergang entstehen, können auf weniger als 0,1 % korrigiert werden. Damit konnten erstmals wandnahe Messungen innerhalb eines Strömungsmodells eines neuartigen Ofens zur Züchtung von Siliziumkristallen durchgeführt werden.

Eine Anwendung des LDV-PS war die Messung der Strömungsverteilung eines Brennstoffzellenstapelmodells. In einem solche Stapel werden alle Brennstoffzellen über einen Einlassverteiler mit Reaktionsgas versorgt. Eine Ungleichverteilung des Reaktionsgases sorgt für eine geringere Effizienz und Lebensdauer des gesamten Stapels. Im Experiment konnte mit Hilfe eines Einsatzes für den Einlassverteiler die Ungleichverteilung von 10 % auf 4 % reduziert werden. Mit diesen Ergebnissen kann die Effizienz realer Brennstoffzellenstapel durch Optimierung der Strömungsverteilung erhöht werden.

Die Messung der Temperatur wurde durch die Kombination des LDV-PS mit laserinduzierter Fluoreszenz (LIF) realisiert. Über die Temperaturabhängigkeit der Intensität zweier Farbstoffe, welche in Streupartikeln gelöst sind, konnte die Temperatur mit einer Messabweichung von weniger als 1 °C gemessen werden, ohne dass die Ortsauflösung oder Geschwindigkeitsunsicherheit negativ beeinflusst wurden. Die Temperaturunsicherheit kann auf Kosten der Ortsauflösung weiter verbessert werden und umgekehrt. Der LDV-PS wurde damit zu einem Mikrometer auflösenden Strömungsmesssystem für die Geschwindigkeits- und Temperaturmessung, welches beim Einsatz in den eingangs genannten Prozessen zu Fortschritten, zu welchen höhere Wirkungsgrade, geringere Verlustleistungen und erhöhte biologische Aktivität gehören, führt.

Abstract

Information on the flow present in technical, biological or medical processes allows insight into the underlying physical and chemical processes, for example in fuel cells, labon-a-chip-devices, wet couplings, thermal stratified storages or bioreactors. In all these examples, flows are found in narrow channels (d < 1 mm), with large velocity gradients and temperature differences, whose measurement requires high spatial resolution, low velocity uncertainty and a high working distance. For the investigation of thermal effects, the additional measurement of temperature is necessary.

A measurement system that combines high spatial resolution and low velocity uncertainty is the laser Doppler velocity profile sensor (LDV-PS), which is an extension of the conventional laser Doppler velocimeter. Instead of only one interference fringe pattern, two interference fringe patterns with characteristic fringe spacing curves are superimposed in the measurement volume. This multiple measurement makes it possible to overcome the Heisenberg uncertainty principle. However, measurements in dispersive media have higher measurement uncertainties due to a change of the calibration. Furthermore, temperature measurement is not yet possible with the LDV-PS and has to be developed.

The LDV-PS is set up in time multiplex, i.e. both fringe systems are alternately active. A monochromatic setup eliminates dispersion effects when measuring in liquids and allows the use of luminescent scattering particles to suppress wall reflections. This allows velocity measurements of several 10 m/s with consistently low measurement uncertainty even at large working distances, which were previously not possible.

When measuring in dispersive media, a transition of the laser beams from air into the dispersive medium is unavoidable. The calibration in the dispersive medium was made obsolete in this work by calculating a calibration model that takes both geometric and Gaussian optics into account. Relative systematic measurement deviations of up to 6.5% caused by the transition can be corrected to less than 0.1%. This made it possible for the first time to carry out near-wall measurements within a flow model of a new type of furnace for growing silicon crystals.

One application of the LDV-PS was to measure the flow distribution of a fuel cell stack model. In such a stack, all fuel cells are supplied with reaction gas via an inlet manifold. An uneven distribution of the reaction gas causes a lower efficiency and service life of the entire stack. In the experiment, it was possible to reduce the uneven distribution from 10% to 4% with the help of an insert for the inlet manifold. With these results, the efficiency of real fuel cell stacks can be increased by optimising the flow distribution.

The measurement of the temperature was realised by combining the LDV-PS with laser-induced fluorescence (LIF). Via the temperature dependence of the intensity of two dyes dissolved in scattering particles, the temperature could be measured with a measurement deviation of less than 1 °C without negatively affecting the spatial resolution or velocity uncertainty. The temperature uncertainty can be further improved at the expense of the spatial resolution and vice versa. The LDV-PS thus became a micrometre-resolution flow measurement system for velocity and temperature measurement, which, when used in the processes mentioned above, leads to advances that include higher efficiencies, lower power losses and increased biological activity.

Inhaltsverzeichnis

Da	anksa	agung	III
K	urzfa	ssung/Abstract	\mathbf{V}
A	okürz	zungs- und Symbolverzeichnis	XI
Al	bild	ungs- und Tabellenverzeichnis	ίv
1	Einl 1.1 1.2 1.3	eitung Motivation Stand der Technik 1.2.1 Ortsaufgelöste Strömungsgeschwindigkeitsmessung 1.2.2 Simultane Geschwindigkeits- und Temperaturmessung Ziel und Struktur der Arbeit	1 1 2 2 4 5
2	The	oretische Grundlagen	7
	2.1	Laser-Doppler-Velozimetrie 2.1.1 Der optische Doppler-Effekt 2.1.2 Das Interferenzstreifenmodell	7 7 9
	2.2	Eigenschaften und Grenzen konventioneller Laser-Doppler-Techniken 2.2.1 Eigenschaften des gaußschen Strahls 2.2.2 Ortsauflösung 2.2.3 Geschwindigkeitsunsicherheit	10 10 12 12
	2.3	2.2.4 Unsicherheitskorrelation zwischen Ort und Geschwindigkeit Laser-Doppler-Geschwindigkeitsprofilsensor	14 16 16 18 20 23
	2.4	Grundlagen der Strömungsmechanik	$24 \\ 24 \\ 25$
	2.5	Grundlagen der Temperaturmessung mittels Lumineszenz	26 26 28
3	Stat 3.1	istische Auswertung gemessener Profile Problemstellung	31 31
	$3.2 \\ 3.3$	Neuartiges Verfahren zur Profilbestimmung	$\frac{33}{38}$
		5	

4	\mathbf{Kal}	ibrierung in verschiedenen optischen Medien	41
	4.1	Problemstellung	41
	4.2	Mathematischer Ansatz	43
		4.2.1 Einfluss auf die Kalibrierfunktion	44
		4.2.2 Einfluss auf die Streifenabstandsfunktion	48
	4.3	Vergleich mit der Kalibrierung in Wasser	51
	4.4	Anwendung: Kristallzüchtungsmodell	53
		4.4.1 Motivation	53
		4.4.2 Experimenteller Aufbau	54
		4.4.3 Ergebnisse und Diskussion	56
		4.4.4 Fazit	62
	4.5	Zusammenfassung & Schlussfolgerungen	62
5	Unt	ersuchung der Strömungsverteilung in einem Modell eines Brenn-	
	stof	fzellenstapels	65
	5.1	Motivation	65
	5.2	Experimenteller Aufbau	66
		5.2.1 Messsystem	66
		5.2.2 Brennstoffzellenstapelmodell	67
	5.3	Strömungssimulation	69
		5.3.1 Einsatz für das Verteilerrohr	71
	5.4	Ergebnisse und Diskussion	72
		5.4.1 Volumenstromverteilung ohne Einsatz	73
		5.4.2 Volumenstromverteilung mit Einsatz	73
	5.5	Zusammenfassung	75
6	Gle	ichzeitige Temperatur- und Geschwindigkeitsmessung mit dem LDV	
	PS	TI A (1) ITZ 1'1 '	777
	0.1 C 0	Idee, Aufbau und Kalibrierung	77
	0.2	Messung an einem Modellexperiment	81
	<i>C</i> 9	0.2.1 Berechnung der Messunsicherheit	82
	0.3	Messunsicherneitsbetrachtung der Temperaturmessung	84
		0.3.1 Signalmodell	80
		0.3.2 Zulanige Messabweichungen	80 97
	6.4	0.3.3 Systematische Messadweichungen	01
	0.4		00
7	Zus	ammenfassung	89
	7.1	Forschungsergebnisse und wissenschaftlicher Fortschritt	89
		7.1.1 Ergebnisse und Fortschritte in der Messtechnik	90
		7.1.2 Ergebnisse bei der Anwendung	91
	7.2	Ausblick	92
\mathbf{Li}	terat	turverzeichnis	95
Ρı	Publikationsverzeichnis 10		
Be	Betreute studentische Arbeiten 10		

Abkürzungs- und Symbolverzeichnis

BP	Bandpassfilter
CFD	numerische Strömungsmechanik
Cz	Czochralski-Verfahren
DCS	Dichroitischer Spiegel
EOM	Elektrooptischer Modulator
FFT	Schnelle Fouriertransformation
FZ	Zonenschmelzverfahren
HT-PEMFC	${\it Hochtemperatur-Polymerelektrolytmembranbrennstoff zelle}$
L	Linse
LDV	Laser-Doppler-Velozimetrie
LDV-PS	Laser-Doppler-Geschwindigkeitsprofilsensor
LIF	Laserinduzierte Fluoreszenz
LP	Langpassfilter
PD	Photodiode
(μ) -PIV	(Mikro)-Particle Image Velocimetry
PMMA	Polymethylmethacrylat/Acrylglas
PST	Polarisierender Strahlteiler
(μ) -PTV	(Mikro)-Particle Tracking Velocimetry
RANS	Reynolds-gemitteltes Navier-Stokes Turbulenzmodell
S	Spiegel
Si-APD	Silizium-Lawinenphotodiode
Si-GC	Siliziumkristallzüchtung aus Granulat-Tiegel
SIMPLE	Semi-implizite Methode für druckverknüpfte Gleichungen
SNR	Signal-zu-Rausch-Verhältnis
TLC	Thermochromer Flüssigkristall
UV	Ultraviolett

Abkürzungsverzeichnis

Symbolverzeichnis

Δd	Differenz des Streifenabstands am Rand und im Zentrum des
	Messvolumens
Δd_r	relative Abweichung der Steigung der Streifenabstandsfunktion
Δp	Druckabfall der Strömung zwischen Einlass und Auslass eines Rohrs
Δv	Intervallbreite für die Geschwindigkeit
Δv_r	relative Geschwindigkeitsabweichung
Δz	Intervallbreite für den Ort
ϵ	Extinktionskoeffizient

ϵ_0	elektrische Feldkonstante
ϵ_r	relative Permittivität
ζ	Gouy-Phase des Gaußschen Strahls
η	dynamische Viskosität
θ	halber Kreuzungswinkel, Heaviside-Funktion
θ_{div}	Divergenzwinkel des Gaußschen Strahls
κ	von Kármán-Konstante
λ	Wellenlänge
ν	kinematische Viskosität
ρ	Dichte
σ	Ausdehnung des Gaußfilters
σ_c	Unsicherheit der Konzentration
σ_d	Messunsicherheit des Streifenabstands
σ_D	Messunsicherheit aufgrund des Detektorrauschen
σ_{f_D}	Messunsicherheit der Dopplerfrequenz
σ_r	Unsicherheit des Partikelradius
σ_T	Messunsicherheit der Temperatur
σ_{v_x}	Messunsicherheit der Geschwindigkeit
σ_w	Messunsicherheit aufgrund der Wandeffekte
σ_z	Messunsicherheit des Orts
τ	mittlere Lebensdauer
$ au_w$	Wandscherspannung
ϕ	konstante Phasenverschiebung
Φ_f	Quantenausbeute
ω	Kreisfrequenz des Lichts ($\omega = 2\pi f$)
a_I	Abstand der Strahltaille entlang des Strahls in Medium I
b,h	Breite und Höhe eines rechteckigen Kanalquerschnitts
с	Konzentration
c_0	Lichtgeschwindigkeit im Vakuum
C	Konstante
C^+	dimensionslose Konstante
d	Streifenabstand
d_0	Zentraler Streifenabstand
$d_{1,2}$	Streifenabstandsfunktionen mit Indizes 1,2
d_a	Absorptionslänge
d_h	hydraulischer Durchmesser
d_I	Zurückgelegte Weglänge entlang der optischen Achse in Medium ${\cal I}$
d_{min}	minimaler Streifenabstand im Messvolumen
d_P	Partikeldurchmesser
E	Amplituden des elektrischen Feldes
\vec{e}_i	Einheitsvektor in Richtung des Laserstrahls mit Index i
\vec{e}_x	Einheitsvektor senkrecht zur optischen Achse
\vec{e}_z	Einheitsvektor entlang der optischen Achse
f	Brennweite
f_D	Dopplerfrequenz
f_L	Frequenz des Lichts
f_S	Schaltrate der Laser
G	Glättungsfunktion

H_f	Hesse-Matrix
I	Intensität
I_f	Fluoreszenzintensität
I_L	Laserintensität
k	Betrag des Wellenvektors
l	Kanallänge vor der Messposition
L	Länge eines Rohres
l_x, l_y, l_z	Halbachsen des Messvolumens eines LDV-Systems
m	Steigung der Kalibrierfunktion
M	Modulationsgrad
n	Brechungsindex
N	Anzahl an Messpunkten
P	Leistung
q	Quotient der Streifenabstandsfunktionen/Kalibrierfunktion
q_0	Quotient im Zentrum des Messvolumens
\overline{Q}	Volumenstrom
r,z	Zylinderkoordinaten
R	Krümmungsradius der Wellenfront des Gaußschen Strahls
Re	Reynolds-Zahl
t	Zeit
t_s	<i>t</i> -Faktor
T	Temperatur
T_p	Periodendauer
u^+	dimensionslose mittlere Geschwindigkeit
u_{τ}	Schubspannungsgeschwindigkeit
v	Betrag der Geschwindigkeit
\vec{v}	Geschwindigkeitsvektor
v_x	Geschwindigkeitskomponente senkrecht zur optischen Achse
V	Volumen
w	Radius des Gaußschen Strahls
w_0	Radius der Strahltaille des Gaußschen Strahls
x,y,z	Kartesische Koordinaten
y^+	dimensionsloser Abstand von einer Wand
z_R	Rayleighlänge des Gaußschen Strahls
z_w	Abstand der Strahltaille vom Kreuzungspunkt entlang \boldsymbol{z}
z_{w_I}	Abstand der Strahltaille im Medium mit Index ${\cal I}$
L,G,M	Indizes für Luft, Glas und Medium

Abbildungsverzeichnis

2.1	Prinzip des Überlagerungsempfangs bei LDV	8
2.2	Prinzip des Interferenzstreifenmodells	9
2.3	Gauß-Strahl, schematisch	11
2.4	Exemplarischer Verlauf des Streifenabstands eines LDA	13
2.5	Beispiel zweier Streifenabstandsfunktionen und einer Kalibrierfunktion	18
2.6	Abhängigkeit der zufälligen Messabweichung vom SNR	19
2.7	Schematische Zeichnung des LDV-PS im Zeitmultiplex mit zwei Lasern	21
2.8	Übersprechverhalten des LDV-PS mit zwei Lasern	21
2.9	Abhängigkeit der zufälligen Messabweichung vom SNR	22
2.10	Schematische Zeichnung des LDV-PS im Zeitmultiplex mit elektroopti-	
	schem Modulator	23
2.11	Jabłoński-Termschema	27
3.1	Messung der Grenzschicht einer kreisförmigen turbulenten Strömung	32
3.2	Histogramm einer turbulenten Rohrströmung	33
3.3	Histogramm einer turbulenten Rohrströmung, dreidimensionale Ansicht	34
3.4	Grat des Histogramms einer turbulenten Rohrströmung	35
3.5	Grat des Histogramms einer turbulenten Rohrströmung	36
3.6	Messung der Grenzschicht einer rechteckigen turbulenten Strömung	37
3.7	Grat des Histogramms einer turbulenten Kanalströmung	37
4.1	Analytische Streifenabstands- und Kalibrierfunktion	42
4.2	Skizze zur Veranschaulichung des LDV-PS beim Übertritt in ein anders	
	Medium	43
4.3	Vergleich zwischen Simulation und Berechnung des Einflusses der Eindring-	
	tiefe auf den Anstieg der Kalibrierfunktion \hdots	45
4.4	Einfluss des halben Kreuzungswinkels auf die Kalibrierfunktion	46
4.5	Einfluss des halben Kreuzungswinkels auf die Kalibrierfunktion bei größe-	
	rem z_w	47
4.6	Einfluss des halben Kreuzungswinkels auf die Kalibrierfunktion bei unter-	
	schiedlichem z_w	47
4.7	Einfluss des halben Kreuzungswinkels auf die Kalibrierfunktion bei leicht	
	unterschiedlichem z_w	48
4.8	$\operatorname{Einfluss}$ des halben Kreuzungswinkels auf die Streifenabstandsfunktionen $% \operatorname{Einfluss}$.	49
4.9	Einfluss des halben Kreuzungswinkels auf die Streifenabstandsfunktionen	
	bei größerem z_w	50
4.10	Vergleich der Streifenabstände in Wasser und Luft	51
4.11	Vergleich der Streifenabstände in Wasser und Luft	52
4.12	Vergleich der Kalibrierfunktionen in Wasser und Luft	52
4.13	Skizze des LDV-PS nach dem Umbau	54

4.14	Bild des Modellexperiments und PIV-Aufbaus	55
4.15	Skizze und Bild des Schmelzofen-Modellexperiments	56
4.16	Auswertung der PIV-Messung	57
4.17	Geschwindigkeitsprofil im vertikalen Spalt des Modellofens	59
4.18	Geschwindigkeitsprofil im horizontalen Spalt des Modellofens	60
5.1	Bild des LDV-PS-Aufbaus mit EOM	67
5.2	CAD-Modell eines Brennstoffzellenstapels und Bild eines Brennstoffzellen-	
	stapelmodells	68
5.3	Für die Simulation des HT-PEMFC-Stapels verwendetes Netz und Quer-	
	schnitt der Strömungsgeschwindigkeiten	70
5.4	Bild des Einlassverteilereinsatz und Breiten der Einlassöffnungen	71
5.5	Vergleich der Simulation und der Messung des Brennstoffzellenstapelmodells	74
6.1	Schematische Zeichnung der Detektionsoptik	79
6.2	Skizze des Versuchsaufbaus zur Temperaturmessung	80
6.3	Beispielsignal Temperaturmessung; Kalibrierfunktion für die Temperatur-	
	messung	81
6.4	Messung der Grenzschicht eines beheizten Kanals	82
6.5	Einzelne Messpunkte und Standardabweichung der Temperaturmessung	
	der Grenzschicht eines beheizten Kanals	83
6.6	Zusammenhang zwischen Orts- und Zeitauflösung sowie Temperatur- und	
	Geschwindigkeitsunsicherheit	84

Tabellenverzeichnis

$4.1 \\ 4.2$	Parameter des untersuchten LDV-PS	-	$\frac{51}{56}$
6.1	Vergleichstabelle der Leistung und der Temperatur des Peltier-Elements .	•	80