

Herstellung und Verarbeitung von 3D-Rundgestricken

Christoph Gregor Peiner

"Herstellung und Verarbeitung von 3D-Rundgestricken"

"Production and Processing of 3D Circular Knitted Fabrics"

Von der Fakultät für Maschinenwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Christoph Gregor Peiner

Berichter: Univ.-Prof. Prof. h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries

apl. Prof. Dr.-Ing. Peter Urban

Tag der mündlichen Prüfung: 29.08.2022

"Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar."

Textiltechnik/Textile Technology

herausgegeben von Univ. Prof. Professor h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries

Christoph Gregor Peiner

Herstellung und Verarbeitung von 3D-Rundgestricken

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2022)

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8832-8 ISSN 1618-8152

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren

Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Wesentliche Teile des Inhalts dieser Arbeit entstanden in Zusammenarbeit mit der AUNDE Achter und Ebels GmbH, Mönchengladbach. Teile dieser Arbeit basieren zudem auf den Ergebnissen der von mir betreuten studentischen Arbeiten. Eine bibliographische Auflistung befindet sich am Ende des Literaturverzeichnisses.

Danksagung

Diese Dissertation entstand im Rahmen meiner Arbeit als Wissenschaftlicher Mitarbeiter am Institut für Textiltechnik (ITA) der RWTH Aachen University und teilweise in Zusammenarbeit mit der AUNDE Achter und Ebels GmbH, Mönchengladbach. Ich möchte mich an dieser Stelle bei allen bedanken, die mich vor und während dieser Zeit unterstützt und zu meiner Arbeit beigetragen haben:

Ich danke meinem Doktorvater Univ.-Prof. Prof. h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries und meinem Zweitbetreuer apl. Prof. Dr. Peter Urban für die Betreuung meiner Dissertation und für die hilfreichen Hinweise und Anmerkungen. Darüber hinaus danke ich der AUNDE Achter und Ebels GmbH, Mönchengladbach, für die gute Zusammenarbeit, die Unterstützung und das entgegengebrachte Vertrauen. Prof. Thomas Gries, Dr. Dieter Veit und Dr. Christoph Greb danke ich für die am ITA gebotenen Möglichkeiten und die Unterstützung während meiner Arbeit. Ich danke meinen Kolleginnen und Kollegen am ITA, insbesondere in meinem Bereich "Fabric Production", für die gemeisterten Herausforderungen und für die gemeinsamen Feste und Fahrten. Ein großer Dank geht auch an Frau Cremer, die die Arbeit korrigiert und immer wieder mit guten und ehrlichen Worten meine Motivation hochgehalten und mich angespornt hat. Den Kolleginnen und Kollegen in der IT, im Technikum, in der Budgetabteilung und in der ITA Technologietransfer GmbH, Aachen, danke ich für die freundliche und offene Zusammenarbeit – ich wünsche euch weiterhin ein offenes Ohr und viel Geduld mit den kommenden Generationen von Wissenschaftlichen Mitarbeitern.

Ganz besonders möchte ich Henning Löcken und Leon Reinsch sowie meinen Studies und Hiwis für die Hilfe, die intensiven Diskussionen und die gemeinsamen Stunden an den Strickmaschinen des ITA während schier unendlicher Versuchsreihen (oder bei der Produktion von Weihnachtspullovern) danken. Dazu danke ich Carolin Schwager, Rahel Krause, Melina Sachtleben, Hannah Kelbel, Gesine Köppe, Stefan Hesseler und besonders Lukas Lauchthaler für die Hilfe verschiedenster Art zu jeder Zeit, die guten Gespräche und das regelmäßige "Dampfablassen" an der Kaffeemaschine.

Zum Abschluss möchte ich meinen Geschwistern und Eltern sowie meinem besten Freund Christian danken: Ihr habt mich mein Leben lang begleitet, ihr seid und wart immer mein Halt und mein zweiter Boden. Aber ohne dich, liebe Laura, wäre diese Arbeit und ihr erfolgreicher Abschluss nicht möglich gewesen: Du hast mich unermüdlich angetrieben und mir den Rücken gestärkt, du hast mich getröstet und mir Mut gemacht. Du bist und bleibst mein Antrieb und Anker in der Welt. Dank dir kann ich sagen:

Mann, war das wieder einfach.

Aachen, August 2022

Christoph Peiner

<u>Inhaltsverzeichnis</u> <u>I</u>

Inhaltsverzeichnis

1	Einleitung				
	1.1	Ausgangssituation und Motivation der Arbeit	1		
	1.2	Zentrale Defizite und daraus abgeleitete Ziele der Arbeit	6		
	1.3	Ansatz und Vorgehen zur Erreichung der Ziele	7		
2	Sta	nd der Technik	10		
	2.1	Textile Flächengebilde	10		
	2.2	Gestricke	11		
		2.2.1 Maschinenelemente zur Maschenbildung	13		
		2.2.2 Maschenbildung	14		
		2.2.3 Weitere Bindungselemente	15		
		2.2.4 Technische Erzeugung und Beschreibung von			
		Bindungselementen	16		
		2.2.5 Kombination von Bindungselementen	17		
		2.2.6 Bindungsauswahl durch Einzelnadelsteuerung	19		
		2.2.7 Fehler und Fehlervermeidung	20		
	2.3	Strickmaschinen	22		
		2.3.1 Flachstrickmaschinen	22		
		2.3.2 Rundstrickmaschinen	23		
	2.4	Industrielle Verarbeitung von Textilien	24		
	2.5	Herstellung und Montage von Automobilsitzbezügen	27		
	2.6	3D-Textilien	28		
		2.6.1 Unterscheidung von 2D- und 3D-Textilien	28		
		2.6.2 3D-Gestricke	30		
	2.7	Reife von Technologien	32		
		2.7.1 Reifegradmodelle	32		
		2.7.2 Entwicklung von Reifegradmodellen	33		
	2.8	Zusammenfassung	35		
3	Ent	wicklung von 3D-rundgestrickten Sitzbezugsstoffen	36		
	3.1	Entwicklungsabläufe in der Automobilindustrie	36		
		3.1.1 Stage-Gate-Prozess	37		
		3.1.2 Produktentstehungsprozess (PEP)	38		
		3.1.3 VDA-Leitfaden zum Produktentstehungsprozess	39		

		3.1.4 Entwicklung von Automobilsitzbezügen	40
		3.1.5 VDI-Richtlinie VDI 2221	41
	3.2	Auswahl einer Entwicklungs- und Bewertungsmethode	43
	3.3	Wirtschaftlich-technische Anforderungen	43
		3.3.1 Technische Anforderungen	44
		3.3.2 Wirtschaftliche Anforderungen	48
	3.4	Zusammenfassung	51
4	3D-	Rundstricktechnik	52
	4.1	Begriffsdefinition	53
	4.2	Programmierung der Strickmaschine	60
	4.3	Digitale Schnittbilderstellung	61
	4.4	Optische Gestaltung von 3D-Rundgestricken	64
	4.5	Abnäher als Befestigungselemente und Futterstoff	71
	4.6	Zusammenfassung	74
5	Feh	lervermeidung in der 3D-Rundstricktechnik	76
	5.1	Technische Grundlagen und Vorgehen	76
	5.2	Technische Analyse und FMEA	78
	5.3	Fehler-Ursachen-Analyse	80
		5.3.1 Laufmaschen und Risse im Gestrick	81
		5.3.2 Falsch abgebundene Maschen und Streifen	89
		5.3.3 Geöffnete Abnäher und Abnäheraufwurf	107
		5.3.4 Zusammenfassung der Fehler-Ursachen Analyse	115
	5.4	Validierung der Fehlervermeidung und Zusammenfassung	117
6	Ver	arbeitung von 3D-Rundgestricken	120
	6.1	Anforderungen aus dem industriellen Verarbeitungsprozess	121
	6.2	Prozessvarianten	123
		6.2.1 Spannrahmen	124
		6.2.2 Formwäsche und -Fixierung	126
		6.2.3 Freiwäsche und -Fixierung	130
	6.3	Versuchsaufbau im Technikumsmaßstab	131
		6.3.1 Notwendige Prozessschritte	131
		6.3.2 Auswahl von Maschinen und Hilfsmitteln für den	
		Versuchsaufbau	133

<u>Inhaltsverzeichnis</u> III

142 146
146
147
149
150
151
152
153
157
158
158
161
162
162
166
167
168
170
172
173
176
181
181
183
183
184
187
187
193

|--|

12 Literatur		195	
13 Anhang A: Ergebnis	se der Versuchsreihen	214	
14 Anhang B: Prüferge	bnisse	220	
15 Abkürzungsverzeich	nnis	222	