

Fares Ali

Applikation der Laserstrukturierung zur Gewährleistung der Verbindungsfunktionalität in der reibkraftschlüssigen Schnittstelle Werkzeug-Spannfutter

Schriftenreihe des PTW "Innovation Fertigungstechnik"

Herausgeber Prof. Dr.-Ing. Eberhard Abele Prof. Dr.-Ing. Joachim Metternich Prof. Dr.-Ing. Matthias Weigold

Applikation der Laserstrukturierung zur Gewährleistung der Verbindungsfunktionalität in der reibkraftschlüssigen Schnittstelle Werkzeug-Spannfutter

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt

zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

vorgelegt von

Fares Gamal Abdullah Ali, M. Sc.

aus Aden

Berichterstatter: Prof. Dr.-Ing. Eberhard Abele

Mitberichterstatter: Prof. Dr.-Ing. Eckhard Kirchner

Tag der Einreichung: 24.01.2022

Tag der mündlichen Prüfung: 19.04.2022

Darmstadt 2022 D17

Schriftenreihe des PTW: "Innovation Fertigungstechnik"

Fares Ali

Applikation der Laserstrukturierung zur Gewährleistung der Verbindungsfunktionalität in der reibkraftschlüssigen Schnittstelle Werkzeug-Spannfutter

D 17 (Diss. TU Darmstadt)

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2022

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8852-6 ISSN 1864-2179

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de Für den Frieden im Jemen!

Inhaltsverzeichnis

In	halts	sverzeichnis	I		
A	bbild	lungsverzeichnis	III		
Та	ıbell	enverzeichnis	VIII		
1	Pro	blemstellung und Zielsetzung	1		
2	Gru	ındlagen	3		
	2.1	Verbindungselemente im Maschinenbau	3		
	2.2	Pressverbände in der Werkzeugaufnahme	4		
	2.3	Die mechanische Auslegung von Pressverbindungen	6		
	2.4	Die mechanische Belastung von Pressverbindungen (Werkzeug/Spannfutter Beispiel)	: als 10		
	2.5	Tribologie der Kontaktflächen	14		
		2.5.1 Das tribologische System	15		
		2.5.2 Reibungsmodelle	18		
		2.5.3 Verschleiß	20		
	2.6	Die numerische Modellierung von Pressverbindungen	22		
		2.6.1 Formulierung des strukturmechanischen Problems	22		
		2.6.2 Formulierung der reibschlüssigen Verbindung (Kontaktmodell)	22		
	2.7	Grundlagen der Laserstrukturierung	24		
		2.7.1 Aufbau und Funktion des Lasers	24		
		2.7.2 Der technische Betrieb von Lasern	25		
		2.7.3 Die Energieeinkopplung und Prozessregime der Laserbearbeitung:	25		
3	Lös	sungsfindung und weiteres Vorgehen	27		
	3.1	Lösungsfindung	27		
	3.2	Weiteres Vorgehen	29		
4	Applikation der Laserstrukturierung auf der Spannfläche des Werkzeugs31				
	4.1	Auswahl einer geeinigten Laserstrukturierung zur Erhöhung des Haftbeiwerts	s 31		
	4.2	Prozessbeschreibung der Laserstrukturierung	33		
	4.3	Parameteridentifikation der Laserstrukturierung	33		
	4.4	Experimentelle Parametrierung des Prozesses	35		
	4.5	Auswertung und Diskussion	36		

OLLE H

5	Experimenteller Einsatz der Laserstrukturierung an einem Prüfstand	40
	5.1 Abstraktion des Belastungskollektivs eines Fräsprozesses	40
	5.2 Spannfutter und Werkzeugdummy	41
	5.3 Aufbau des Prüfstands	42
	5.3.1 Komponenten des Prüftands	43
	5.3.2 Mechanischer Aufbau des Prüfstands	46
	5.4 Versuchsdurchführung	50
	5.5 Auswertung und Diskussion	52
6	Einfluss der Laserstrukturierung auf die Qualität des Zerspanprozesses	55
	6.1 Identifikation des Einflusses der Lasterstrukturierung auf den Zerspanpro	zess-55
	6.2 Charakterisierung des Rundlaufs	56
	6.3 Planung der Untersuchung	57
	6.4 Durchführung der Untersuchung	58
	6.5 Auswertung und Diskussion der Ergebnisse	59
7	Experimenteller Einsatz der Laserstrukturierung im Zerspanprozess	61
	7.1 Versuchsplanung	61
	7.2 Versuchsdurchführung:	63
	7.3 Auswertung und Diskussion	65
	7.3.1 Einfluss des Drallwinkels	66
	7.3.2 Einfluss der Oberflächenmanipulation	68
8	Numerisches Modell zur Beschreibung des Auszugverhaltens	71
	8.1 Abstraktion des mechanischen Problems und Kontaktmodellierung	71
	8.2 Abstraktion des Belastungskollektivs	73
	8.3 Auswertung des numerischen Modells	74
	8.4 Erweiterung des Belastungskollektivs	77
	8.5 Auswertung des numerischen Modells	78
9	Zusammenfassung und Ausblick	81
Li	iteraturverzeichnis	84
St	tudentische Arbeiten	94
Le	ebenslauf	95

Abbildungsverzeichnis

Abb. 1: Ein Werkstück aus Titanlegierung (TiAl6V4), bei dem der Auszug des Werkzeugs im Rahmen dieser Arbeit provoziert worden ist; durch den Auszug erhöht sich die vordefinierte Schnitttiefe (aP) am Werkstück (Schadenfall); in der Abbildung sind auch Versuche ohne Auszug zu sehen (Soll-Zustand); dies wurde mit der in dieser Abb. 2: Eine übergeordnete Gegenüberstellung der verschiedenen Verbindungsarten Abb. 3: Beispielhafter Pressverband: wird der Verband mit einer Kraft (F) belastet, wirkt die Reibkraft (FR) in der Verbindung dieser entgegen [3]4 Abb. 4: Die zwei Schnittstellen der Werkzeugaufnahme; in dieser Dissertation ist die Werkzeughalter-Werkzeug-Schnittstelle relevant; diese wird Spannfutter genannt 4 Abb. 6: Glättung der Rauheitsspitzen (Asperitäten) beim Fügen der Welle in die Nabe [17].....7 Abb. 7: Berechnungsmodell für zylindrischen Pressverband nach [17].....7 Abb. 8: Berechnungsmodell für kegeligen Pressverband nach [18]......9 Abb. 9: In dieser Dissertation aufgenommenes Belastungskollektiv bei einem Abb. 10: Mechanismus der Übertragung von Biegebelastung im Pressverband; links (a) ist die Belastungsübertragung mit örtlichem Gleiten an der Nabenkante nach [35, 39] dargestellt; rechts (b) ist das Lösen bzw. vollständige Durchrutschen des Pressverbands Abb. 11: Schematische Darstellung des schlupffreien Übertragungsbereichs eines kegeligen Pressverbands (Einsteckwellen mit schrägverzahntem Ritzel); Fbl Biegekraft in Längsrichtung; Fbl.l* Löse-Biegekraft in Längsrichtung; Fbr Biegekraft in Radialrichtung; Fbr,1* Löse-Biegekraft in Radialrichtung; T Torsionsmoment; TR* Löse-Abb. 13: Einflüsse auf das tribologische Systemverhalten innerhalb der Systemstruktur

Abb. 14: Schematischer Aufbau technischer Oberflächen von Metallen [55]16
Abb. 15: Differenzierung zwischen realer und idealer Oberfläche abgeleitet nach [55] 17
Abb. 16: Verzahnung von Rauigkeitsspitzen als Ursache für die Reibkraft nach Coulomb [65] 18
Abb. 17: Coulomb'sches Reibgesetz in Anlehnung an [65]
Abb. 18: Oberflächendarstellung nach der Theorie von HERTZ in a), nach der Theorie Greenwood und Williamson in b) und Darstellung einer stochastischen rauen Oberfläche in c) nach [70]
Abb. 19: Verschleißarten nach [55]21
Abb. 20: Systemtechnische Betrachtung des tribologischen Systems in der vorliegenden Dissertation
Abb. 21: Augmented-Lagrange-Methode in Anlehnung an [78]23
Abb. 22: Schematischer Aufbau einer Laserstrahlquelle in Anlehnung an [81]24
Abb. 23: Prozessregime bei der Einkopplung von Laserstrahlung in ein Werkstück bei steigender Intensität mit Aufheizen, Schmelzen, Verdampfen sowie Plasmabildung/Materialabtrag in Anlehnung an [81]
Abb. 24: Abhängigkeit der Belastungsgrenze von dem Haftbeiwert in Anlehnung an [19]. Punkt 1 ist die Belastungsgrenze von einem Pressverband (kegelige Einsteckwellen mit schrägverzahntem Ritzel) mit einem Haftbeiwert von 0,15. Punkt 2 wäre die Belastungsgrenze des gleichen Bauteils, falls der Haftbeiwert nach [47] mit Laserstrukturierung auf 0.7 erhöht würde
Abb. 25: Struktur und Zielsetzung der einzelnen Kapitel der vorliegenden Dissertation
Abb. 26: In Vorarbeiten dieser Dissertation applizierte Strukturmuster; um die Homogenität der laserstrukturierten Spannflächen zu überprüfen, die Aufwurfhöhe der Laserstruktur einzustellen und die Verschleißspuren nach den experimentellen Versuchen zu analysieren, werden Weißlichtinterferometrie (smartWLI-compact extended range, GBS) und optische Digitalmikroskopie (VHX-7000, Keyence) genutzt
Abb. 27: Schematischer Aufbau der Strukturiermaschine
Abb. 28: Schematische Darstellung des untersuchten Systems

Abb. 29: Grafische Darstellung des vollfaktoriellen Versuchsplans für drei Faktoren auf jeweils drei Stufen (links); die Auswertemethodik der Versuchsergebnisse mit Weißlichtinterferometrie nach DIN EN ISO 13565 (rechts)
Abb. 30: Einfluss der einzelnen Versuchsfaktoren (Laserleistung, Laserfrequenz und Vorschubgeschwindigkeit) auf die Zielgröße (Aufwurfhöhe)
Abb. 31: Wechselwirkung zwischen den Versuchsfaktoren; nach der Methodik der statistischen Versuchsplanung [103] wird diese Auswertung Zweifachwechselwirkung oder "Interaction Effect" genannt
Abb. 32: Reduktion der Faktorkombinationen auf zwei Faktoren und zwei Stufen (vier Kombinationen) statt drei Faktoren und drei Stufen (27 Kombinationen)
Abb. 33: Schematische Darstellung des Belastungskollektivs am Prüfstand; das Werkzeug wird reproduzierbar mit statischer Axialkraft und wechselnder Radialkraft beaufschlagt
Abb. 34: Einspannung des Werkzeugs im Zangenspannfutter; die Durchgangsbohrung wird zur Einleitung der Axialkraft genutzt; die Radialkraft wird über die Mantelfläche des Werkzeugs eingeleitet
Abb. 35: Schaltplan der hydraulischen Leitungen, der Steuerungs- und Sensorsignale am Prüfstand
Abb. 36: Aufteilung der Baugruppen vom Prüfstand; eine rechnergestützte Modellierung des Prüfstands (links), der Prüfstand im aufgebauten Zustand (rechts)
Abb. 37: Komponenten und Aufbau der Zugkraft- (a) und Radialkraftgruppe (b) 47
Abb. 38: Rechnergestützte Modellierung des Prüfstands zur Aufzeigung des Spindelbocks, der Vorspannung der Werkzeugaufnahme am Prüfstand und der Belastungsfreiheitsgerade
Abb. 39: Lokalisation, Konfigurationen und Wegsensorik im Spannfutter; der Einsatz der Konfiguration mit einem Sensor wird in diesem Kapitel diskutiert; der Einsatz der Konfiguration mit zwei Sensoren ist in [38] veröffentlicht und wird in Kap. 8 erläutert
Abb. 40: Topografische Untersuchung der Proben aus Kap. 4; relevant für die Untersuchung sind die Asperitäten (Profilhöhe) der Spannfläche; die Profilhöhe der feingeschliffenen Spannfläche wird taktil gemessen und nach DIN EN ISO 4287 [110] ausgewertet; die Profilhöhe der strukturierten Spannfläche wird optisch aufgenommen und nach DIN EN ISO 13565 [58–60] profiliert

Uberschwingung lässt sich mit einer Einschwingdauer Te= 380 ms charakterisieren51
Abb. 42: Auswertung der experimentellen Versuche; im oberen Diagramm ist das systematisch steigende Belastungskollektiv über die Zeit aufgetragen; im unteren Diagramm ist der Auszug der beiden Proben dargestellt; die Verläufe des Auszugs sind mit Anfangswerten "offset" vorgesehen, um die Überlappung der beiden Verläufe zum Anfang der Versuche zu vermeiden
Abb. 43: Optische und taktile Messungen zur Untersuchung der Profilhöhe von beiden Proben
Abb. 44: Zerspanprozess als System [93]
Abb. 45: Modell zur Beschreibung des kumulativen Rundlauffehlers als Summe von Einzelexzentrizitäten in Anlehnung an [27]
Abb. 46: Versuchsaufbau zur optischen Vermessung des Rundlauffehlers58
Abb. 47: Rundlauffehler der beiden Proben (jeweils 100 Einspannvorgang und 25 Messungen). Der Rundlauffehler wird auf den höchst gemessenen Wert normiert; der höchste Rundlauffehler lässt sich bei der feingeschliffenen Probe feststellen
Abb. 48: Modellprozess zur Nachbildung zerspanender Fertigung von tiefen Kavitäten in TiAl6V4-Verdichterscheiben für Flugtriebwerke; dabei werden die Prozessparameter (Schnittliefe ap, Schnittbreite ae, Vorschub fz und somit die Vorschubgeschwindigkeit) systematisch variiert
Abb. 49: Probenkonfiguration
Abb. 50: Weitere Rahmenbedingungen der experimentellen Untersuchung
Abb. 51: Versuchsablauf
Abb. 52: Messtechnischer Aufbau zur Überwachung der Prozesskräfte
Abb. 53: Vergleich der Einsatzgrenzen für Proben mit verschiedenen Drallwinkel66
Abb. 54: Zeitliche Aufnahme der Prozesskraft in y-Richtung (Belastung) ohne und mit Auszug des Werkzeugs aus dem Spannfutter; das Koordinatensystem der Kraftaufnahme ist in Abb.52 definiert
Abb. 55: Mit einer taktilen Messung lassen sich die deterministischen und stochastischen Verteilungen der Asperitäten der beiden Proben eindeutig zuordnen
Abb. 56: Aufbau des numerischen Modells

Abb. 41: Überschwingung des Belastungskollektivs beim Lastwechsel; diese

Abb. 57: Diskretisierung der Radialkraft im numerischen Modell; die Axialkraft (nicht dargestellt) wird reinstatisch (konstant) diskretisiert
Abb. 58: Experimenteller und numerischer Auszug des Werkzeugs aus dem Spannfutter
Abb. 59: In Vorarbeiten experimentell identifizierte Kippbewegung des Werkzeugs infolge einer wechselnden Radialkraft [38]75
Abb. 60: Numerisch identifizierte Kippbewegung des Werkzeugs infolge einer wechselnden Radialkraft 76
Abb. 61: Krafteinleitung zur Modellierung der Umlaufbiegebelastung nach [39]77
Abb. 62: Mathematische Beschreibung der umlaufenden Radialkraft zur Erweiterung des numerischen Modells 78
Abb. 63: Numerischer Auszug des Werkzeugs aus dem Spannfutter infolge einer umlaufenden Radialkraft und einer statischen Axialkraft 79
Abb. 64: Spannfläche des Werkzeugs vor und nach dem Auszug während eines Zerspanprozesses 80

Tabellenverzeichnis