Philip Lucas Neureuther

Strategien zur Störgrößenkompensation mittels adaptiver Optik für das ELT-Instrument METIS

Band 65

Berichte aus dem Institut für Systemdynamik Universität Stuttgart

Strategien zur Störgrößenkompensation mittels adaptiver Optik für das ELT-Instrument METIS

Von der Fakultät

Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Philip Lucas Neureuther

geboren in Heilbronn

Hauptberichter:Prof. Dr.-Ing. Dr. h. c. Oliver SawodnyMitberichter:Prof. Dr.-Ing. Johann RegerTag der mündlichen Prüfung:04.10.2022

Institut für Systemdynamik der Universität Stuttgart

2022

Berichte aus dem Institut für Systemdynamik Universität Stuttgart

Band 65

Philip Lucas Neureuther

Strategien zur Störgrößenkompensation mittels adaptiver Optik für das ELT-Instrument METIS

> D 93 (Diss. Universität Stuttgart) Shaker Verlag Düren 2022

Bibliografische Informationen der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2022

Copyright Shaker Verlag 2022

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

 ISBN
 978-3-8440-8821-2

 ISSN
 1863-9046

 DOI
 10.2370/9783844088212

 Shaker
 Verlag GmbH

 Adresse:
 Am Langen Graben 15a, 52353 Düren, Deutschland

 Telefon:
 +49 2421 99011-0

 Telefax:
 +49 2421 99011-9

 Internet:
 www.shaker.de

 E-Mail:
 info@shaker.de

Klug ist jener, der Schweres einfach sagt. Albert Einstein 1879–1955

Vorwort

Die folgende Dissertation entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Systemdynamik (ISYS) der Universität Stuttgart, die durch eine sehr enge Zusammenarbeit mit dem METIS-Team des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg geprägt war.

Mein ausdrücklicher Dank gilt Herrn Prof. Dr.-Ing. Dr. h. c. Oliver Sawodny für die Betreuung der Promotion und die Übernahme des Hauptberichts. Außerdem möchte ich mich bei Herrn Prof. Dr.-Ing. Johann Reger vom Institut für Automatisierungs- und Systemtechnik der Technischen Universität Ilmenau für die Übernahme des Mitberichts und Herrn Prof. Dr.-Ing. Stephan Reichelt vom Institut für Technische Optik der Universität Stuttgart für die Übernahme des Vorsitzes in der Prüfungskommission bedanken.

Weiterhin bin ich dem METIS-Team am MPIA für die kontinuierliche fachliche Unterstützung sowie die freundschaftliche Arbeitsatmosphäre sehr dankbar. Insbesondere bedanke ich mich bei Silvia Scheithauer und Thomas Bertram sehr herzlich. Ohne ihre vorbehaltlose Unterstützung wäre die Bewältigung aller fachlichen oder organisatorischen Herausforderungen während meiner gesamten Promotionszeit kaum möglich gewesen.

Meinen aktuellen bzw. ehemaligen Kolleginnen und Kollegen am ISYS danke ich herzlich für die Zusammenarbeit, die durch gegenseitige fachliche Unterstützung und kollegialen Zusammenhalt gekennzeichnet war. Im Speziellen möchte ich mich bei Michael Böhm, Martin Glück und Kevin Schmidt für die zahlreichen Diskussionen und hilfreichen Anregungen sehr herzlich bedanken.

Abschließend gilt eine nicht in Worte zu fassende Dankbarkeit meinen Eltern. Sie haben *immer* an mich geglaubt, mir den Rücken freigehalten und mich bedingungslos unterstützt.

Untergruppenbach, 2022

Philip Neureuther

Kurzfassung

Derzeit befindet sich das Extremely Large Telescope (ELT) der Europäischen Südsternwarte im Bau und wird bei seiner Inbetriebnahme das größte bodengebundene optische Teleskop der Welt mit einem Hauptspiegeldurchmesser von ca. 40 m sein. Das ELT wird u.a. mit dem Instrument Mid-infrared ELT Imager and Spectrograph (METIS) ausgestattet, das astronomische Beobachtungen im mittleren Infrarot durchführt. Bei allen bodengebundenen optischen Teleskopen wird die Wellenfront des einfallenden (Sternen-, Exoplaneten-, ...) Lichtes durch die Erdatmosphäre und Vibrationen des Teleskops oder seiner Instrumente gestört, wodurch das maximal mögliche Auflösungsvermögen insbesondere von Großteleskopen nicht ausgeschöpft werden kann. Deshalb realisiert das ELT in Kooperation mit METIS ein sogenanntes single conjugate adaptive optics(SCAO)-System, um Wellenfrontstörungen bestmöglich zu kompensieren und dadurch scharfe sowie nahezu beugungsbegrenzte Beobachtungen mit METIS zu ermöglichen. Dieses SCAO-System ist ein Regelkreis zur Störgrößenunterdrückung, wobei die Wellenfrontmessung mithilfe des METIS-Pyramiden-Wellenfrontsensors und die Wellenfrontkorrektur mit dem deformierbaren Spiegel M4 sowie dem Kippspiegel M5 des ELT erfolgt.

Im Rahmen dieser Arbeit wird eine modale sowie modulare Regelung inklusive Störgrößenaufschaltung für das METIS-SCAO-System entwickelt. Um den Reglerentwurf sowie die Simulationen für dieses SCAO-System vorzubereiten, werden alle SCAO-Komponenten modelliert und eine simulative SCAO-Repräsentation vorgestellt. Für den deformierbaren Spiegel M4 wird ein räumlichzeitliches Modell hergeleitet, das auf der Kirchhoffschen Plattentheorie sowie elastischen Randbedingungen beruht. Anschließend wird M4 einer Modalanalyse unterzogen und der technisch maximal nutzbare Satz von M4-Eigenmoden ermittelt, um modale M4-Zustandsraummodelle zu erhalten. Weiterhin erfolgt die Aufstellung eines räumlich-zeitlichen Zustandsraummodells für den Kippspiegel M5 auf Grundlage seiner technischen Spezifikationen und anhand von vorhandenen Simulations- sowie Prototypen-Studien. Darüber hinaus wird der METIS-Pyramiden-Wellenfrontsensor mit der dazugehörigen Informationsverarbeitung entsprechend seines Funktionsprinzips und der verfügbaren Literatur modelliert, wobei dieses Sensormodell die Umsetzung der einfallenden zur gemessenen Wellenfront beschreibt. Zuletzt wird eine simulative Repräsentation des vollständigen METIS-SCAO-Systems erläutert, die auf einer modifizierten Simulationssoftware u. a. für SCAO-Systeme basiert und deren Ergebnisse mithilfe verschiedener Bewertungskriterien ausgewertet werden.

Aufbauend auf den Modellierungs-Ergebnissen, wird eine Regelung inklusive Störgrößenaufschaltung für das METIS-SCAO-System entwickelt, die eine gute Korrektur von Wellenfrontstörungen erzielt, alle charakteristischen Eigenschaften des SCAO-Systems berücksichtigt und modular erweiterbar ist. Der SCAO-Regler beruht auf den Eigenmoden der Korrekturspiegel M4 sowie M5 und einer Master-Slave-Regelung für die Tip-Tilt-Störungen, um die zeitliche sowie räumliche Regelungsaufgabe zu entkoppeln bzw. die Korrekturspiegel-Redundanz zu berücksichtigen. Weiterhin kann der SCAO-Regler mit dem räumlich-zeitlichen Fehler-Governor (spatio-temporal error governor, STEG) erweitert werden, der die M4-Beschränkungen im modalen SCAO-System durchsetzt und die SCAO-Performance nicht dauerhaft beeinträchtigt. Für die Umsetzung des STEG sind insgesamt drei verschiedene (z. B. optimierungsbasierte, mengenbasierte) Algorithmen verfügbar. Auf Grundlage einer Umformung des SCAO-Regelkreises, wird außerdem eine adaptive Erweiterung der SCAO-Regelung mithilfe einer zeitdiskreten model reference adaptive control(MRAC)-Formulierung umgesetzt.

Zusätzlich erfolgt die Vorstellung von totzeitkompensierten Störgrößenaufschaltungen für das METIS-SCAO-System, um den SCAO-Regler modular zu erweitern und die Wellenfrontkorrektur für die Erdatmosphäre sowie Vibrationen zu verbessern. Die Vibrationsaufschaltung führt eine modellbasierte Schätzung und Prädiktion durch, die auf den charakteristischen Eigenmoden sowie -frequenzen der vibrationsbedingten Wellenfrontstörungen beruhen. Darüber hinaus wird ein modellbasiertes Aufschaltungskonzept für die Atmosphäre skizziert, das auf einem verteiltparametrischen Transportsystem der atmosphärischen Wellenfrontstörungen basiert.

Alle Komponenten der SCAO-Regelung inklusive Störgrößenaufschaltung werden in verschiedenen Simulationen getestet, charakterisiert und verglichen, um ihre Funktionstüchtigkeit sowie Anwendbarkeit für das METIS-SCAO-System zu verifizieren.

Abstract

The Extremely Large Telescope (ELT) operated by the European Southern Observatory is currently under construction. Upon commissioning, the ELT will be the largest ground-based optical telescope in the world featuring a main mirror of approx. 40 m in diameter. Furthermore, it will be equipped with the Mid-infrared ELT Imager and Spectrograph (METIS) enabling astronomical observations in the mid-infrared, among other instruments. For all ground-based optical telescopes, the wavefront of the incoming light (of stars, exoplanets, ...) is disturbed by the Earth's atmosphere and the vibrations of the telescope or its instruments. Therefore, the telescopes' maximum resolution capability cannot be exploited, especially for very large ones. For this reason, the ELT in cooperation with METIS uses a so-called single conjugate adaptive optics (SCAO) system, compensating for wavefront disturbances and thus enabling sharp as well as almost diffraction-limited observations with METIS. This SCAO system is a control loop rejecting disturbances, measuring the wavefront via METIS' pyramid wavefront sensor and correcting the wavefront using the ELT's deformable mirror M4 and tip-tilt mirror M5.

Within the scope of this thesis, a modal and modular control system with feedforward for the METIS SCAO system is developed. To prepare the controller design and simulations of this SCAO system, all components of the SCAO system are modeled and a simulative SCAO representation is outlined. A spatio-temporal model is developed for the deformable mirror M4 based on Kirchhoff's plate theory and elastic boundary conditions. Subsequently, a modal analysis of M4 is conducted and the maximum set of technically applicable M4 eigenmodes is determined, in order to obtain modal state space models of M4. Furthermore, a spatio-temporal state space model for the tip-tilt mirror M5 is established, based on its technical specifications and existing simulation- as well as prototype-based surveys. Moreover, METIS' pyramid wavefront sensor including the corresponding data processing is modeled according to its working principle and the available literature, providing a sensor model for the conversion of the incoming to the measured wavefront. Finally, a simulative representation of the entire METIS SCAO system is described, which is based on a modified simulation software for e.g. SCAO systems, and its results are analyzed according to different criteria.

Based on the modeling results, a control system with feedforward for the METIS SCAO system is designed, providing good correction of wavefront disturbances, incorporating all the characteristic properties of the SCAO system while being modularly expandable. The SCAO controller uses the eigenmodes of the correction mirrors M4/M5 and a master-slave control for the tip-tilt disturbances, in order to decouple the spatial and temporal components of the control task and to account for the correction mirrors' redundancy, respectively. Furthermore, the SCAO controller can be augmented with the spatio-temporal error governor (STEG), which enforces M4's constraints in the modal SCAO system and does not permanently impair the SCAO performance. Three different (e. g. optimization-based, set-based) algorithms are available for implementing the STEG. Through a transformation of the SCAO control loop, an adaptive extension of the SCAO controller is achieved, using a discrete-time formulation of a model reference adaptive control (MRAC).

In addition, delay-compensated feedforwards are developed for the METIS SCAO system, in order to modularly extend the SCAO controller and to improve the wavefront correction for the Earth's atmosphere and for the vibrations. The feedforward for the vibration rejection conducts a model-based estimation and prediction, which rely on the characteristic eigenmodes and eigenfrequencies of the vibration-induced wavefront disturbances. Moreover, a model-based feedforward concept for the atmosphere is outlined, based on a first-order partial differential equation of the atmospheric wavefront disturbances.

All components of the SCAO control system including the feedforwards are tested, characterized and compared in several simulations, in order to verify their functionality as well as applicability in the METIS SCAO system.

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	r -		1			
	1.1	Regel	ungstechn	ische Herausforderungen am ELT	3			
		1.1.1	Störung	squellen	5			
		1.1.2	Redund	ante Korrekturspiegel	7			
		1.1.3	Beschrä	nkungen der Korrekturspiegel	8			
		1.1.4	Verände	erungen im METIS-SCAO-System	9			
	1.2	Ziele	und Struk	tur der Arbeit	10			
		1.2.1	Modellie	erung des SCAO-Systems	10			
		1.2.2	Entwick	lung der SCAO-Regelung	11			
2	ELI	ն որ	METIS		13			
_	2.1	ELT			13			
	2.2	METI	IS		17			
	2.3	METI	S-SCAO-	System	20			
		2.3.1	Funktio	nsprinzip	21			
		2.3.2	Deformi	erbarer Spiegel M4	22			
		2.3.3	Kippspi	egel M5	25			
		2.3.4	METIS-	Pyramiden-Wellenfrontsensor	26			
3	Mo	dellier	ung des	METIS-SCAO-Systems	29			
	3.1	Defor	mierbarer	Spiegel M4	29			
		3.1.1	Stand der Forschung und Technik					
		3.1.2	Verteiltparametrische Modellierung					
			3.1.2.1	Kirchhoff-Platte	33			
			3.1.2.2	Randbedingungen	35			
		3.1.3	Modalaı	$nalyse \ldots \ldots$	37			
			3.1.3.1	Finite-Differenzen-Approximation	38			
			3.1.3.2	Finite-Elemente-Approximation	42			
			3.1.3.3	Vergleich der Modalanalyse-Ergebnisse	44			
		3.1.4 Bestimmung des nutzbaren Modensatzes						
			3.1.4.1	Abtast theorem	51			
			3.1.4.2	Modale Verkopplung	51			
			3.1.4.3	Plattenmodulationsfehler	53			
			3.1.4.4	Nutzbarer Modensatz	58			
		3.1.5	Räumlio	ch-zeitliches Gesamtmodell	60			

	3.2	Kipps	piegel M5
		3.2.1	Stand der Forschung und Technik
		3.2.2	Modellierung
	3.3	METI	S-Pyramiden-Wellenfrontsensor
		3.3.1	Stand der Forschung und Technik
		3.3.2	Modellierung
	3.4	Simula	ation des METIS-SCAO-Systems
		3.4.1	Simulationsumgebung
		3.4.2	Simulationsauswertung
	3.5	Zusam	umenfassung
4	ME	TIS-SC	CAO-Regelung 75
-	4.1	Entwi	cklung des METIS-SCAO-Reglers
		4.1.1	Stand der Forschung und Technik
		4.1.2	Regelungskonzept
		4.1.3	Regler-Komponenten
			4.1.3.1 Tip-Tilt-Extraktion
			4.1.3.2 Tip-Tilt-Regelung
			4.1.3.3 Regelung für höhere Regelfehler
		4.1.4	Simulationsergebnisse
			4.1.4.1 Ergebnisse mit windinduzierten Vibrationen 85
			4.1.4.2 Ergebnisse mit M4-Aktorausfällen 89
		4.1.5	Alternative Regelungskonzepte
	4.2	Berücl	ksichtigung der M4-Beschränkungen 96
		4.2.1	Stand der Forschung und Technik
		4.2.2	Grundlagen des STEG
			4.2.2.1 Definitionen und Notation 100
			4.2.2.2 Funktionsprinzip
		4.2.3	Algorithmen für den STEG 103
			4.2.3.1 Optimierungsbasierter Algorithmus 103
			4.2.3.2 Iterativ-heuristischer Algorithmus 107
			4.2.3.3 Skalierend-heuristischer Algorithmus 116
			4.2.3.4 Charakteristiken
		4.2.4	Simulationsergebnisse
			4.2.4.1 Ergebnisse des autonomen STEG
			4.2.4.2 Ergebnisse des METIS-SCAO-Systems 120
	4.3	Adapt	ive Erweiterung des METIS-SCAO-Reglers
		4.3.1	Stand der Forschung und Technik
		4.3.2	Konzept
			4.3.2.1 Ziele und Auswahl
			4.3.2.2 Funktionsprinzip
		4.3.3	Komponenten der Erweiterung

		4.3.4 Simulationsergebnisse	137
	4.4	Zusammenfassung	144
5	Stön 5.1 5.2 5.3	Segrößenaufschaltungen für die METIS-SCAO-Regelung Aufschaltung von Vibrations-Störungen 5.1.1 Stand der Forschung und Technik 5.1.2 Konzept 5.1.2.1 Ziele und Auswahl 5.1.2.2 Funktionsprinzip 5.1.3 Realisierung S.1.4 Simulationsergebnisse Aufschaltung von atmosphärischen Störungen 5.2.1 Stand der Forschung und Technik 5.2.2 Konzept 5.2.3 Realisierung 5.2.4 Simulative Anwendung Susammenfassung	147 148 150 150 152 154 158 164 165 167 169 170 172
6	Zus	ammenfassung und Ausblick	173
A	Zeri	nike-Moden	177
A B	Zerr Inva fung	nike-Moden urianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g	177 181
A B C	Zerr Inva fung M4-	nike-Moden arianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz	177 181 185
A B C D	Zern Inva fung M4- Zus	nike-Moden arianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden	177 181 185 189
A B C D E	Zern Inva fung M4- Zus Reg	nike-Moden arianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden ressionsbasierte Transformation	177 181 185 189 201
A B C D E Al	Zern Inva fung M4- Zus Reg	nike-Moden urianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden ressionsbasierte Transformation zungen	177 181 185 189 201 206
A B C D E Al Sy	Zerr Inva fung M4- Zusa Reg okürz	nike-Moden urianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g •Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden ressionsbasierte Transformation zungen lverzeichnis	177 181 185 189 201 206 207
A B C D E Al Sy Al	Zerr Inva fung M4- Zusz Reg okürz mbo	nike-Moden arianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden ressionsbasierte Transformation zungen lverzeichnis ungsverzeichnis	1777 181 185 189 201 206 207 219
A B C D E Al Sy Al Ta	Zerr Invæ fung M4- Zusæ Reg bkürz mbo bbild	nike-Moden arianz von Platten-Eigenmoden bezüglich Rayleigh-Dämp- g Modalanalyse mittels polarem Separationsansatz ätzliche Ergebnisse der M4-Eigenmoden ressionsbasierte Transformation zungen lverzeichnis ungsverzeichnis	1777 181 185 201 206 207 219 223