Zweiphasenströmung in Kühlmitteltanks von Sportwagen

Schriftenreihe des Lehrstuhles für Strömungsmaschinen Herausgegeben von Prof. Dr.-Ing. Frank-Hendrik Wurm

Zweiphasenströmung in Kühlmitteltanks von Sportwagen

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Maschinenbau und Schiffstechnik

der Universität Rostock

vorgelegt von

Ronja Hoch, geb. am 14.08.1989 in Crivitz

aus Rostock

Rostock, 26.08.2021

Schriftenreihe des Lehrstuhls für Strömungsmaschinen

Ronja Hoch

Zweiphasenströmung in Kühlmitteltanks von Sportwagen

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Rostock, Univ., Diss., 2022

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8820-5 ISSN 2749-957X

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Lehrstuhl Strömungsmaschinen der Universität Rostock. Hier möchte ich allen Menschen meinen Dank aussprechen, die mich in dieser Zeit unterstützt haben.

Besonders möchte ich meinem Doktorvater Herrn Prof. Dr.-Ing. Frank-Hendrik Wurm für das mir entgegengebrachte Vertrauen und die Unterstützung bei der Durchführung der gesamten Arbeit danken. Für die Übernahme des Zweitgutachtens danke ich Herrn Prof. Dr.-Ing. Martin Böhle.

Besonderen Dank auch an die Kollegen und die Mitarbeiter der Standortwerkstatt für die freundschaftliche Arbeitsatmosphäre, viele wertvolle Anregungen und stete Hilfsbereitschaft, die wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Bei meiner Familie möchte ich mich ganz besonders herzlich für die Möglichkeit zum Studium, eure bedingungslose Unterstützung und euer Vertrauen bedanken. Meinen lieben Freunden und meinem Partner möchte ich für eure Geduld und euren fortwährenden Rückhalt, auch in schwierigen Phasen, danken.

Inhaltsverzeichnis

A	bbild	ungsverzeichnis	iii
Ta	abell	enverzeichnis	ix
Fo	orme	lverzeichnis	x
1	Ein	leitung	1
2	Sta	nd der Forschung	5
	2.1	Sloshing-Grundlagen	5
		2.1.1 Einflussfaktoren	6
		2.1.2 Ähnlichkeitskennzahlen	8
		2.1.3 Typische Strömungsphänomene	9
	2.2	Experimentelle Untersuchung	12
		2.2.1 Bestimmung der Grenzflächenlage	12
		2.2.2 Druckmessung	13
		2.2.3 Geschwindigkeitsmessung	15
	2.3	Strömungssimulation	17
		2.3.1 Simulationsmethoden	17
		2.3.2 Validierung	20
	2.4	Kfz-spezifische Untersuchungen	20
	2.5	Lufteintrag bei freier Grenzfläche	23
	2.6	Offene Fragen	26
3	Ma	thematische Behandlung von Zweiphasenströmungen	29
	3.1	Strömungsmechanische Grundlagen	29
	3.2	Turbulenzmodellierung	30
	3.3	Modellierung von Zweiphasenströmungen	32
4	Me	thoden	35
	4.1	Experimenteller Aufbau	35
		4.1.1 Untersuchte Geometrien	35
		4.1.2 Prüfstände	37
		4.1.3 Messtechnik	43
	4.2	Numerische Untersuchungen	45
		4.2.1 Rechennetz	45

		4.2.2	Numerisches Setup	48
5	Erg	ebnisse	e der Sloshing-Untersuchungen	53
	5.1	Einflus	s der Behälter-Innengeometrie	53
	5.2	Validie	rung der Strömungssimulation	58
		5.2.1	Phasenverteilung	58
		5.2.2	Druckverlauf	61
		5.2.3	Geschwindigkeitsfelder	63
	5.3	Einflus	ss der Anregung	66
		5.3.1	Behälter ohne Trennwände	68
		5.3.2	Behälter mit vertikalen Trennwänden	71
		5.3.3	Realgeometrie	71
6	Erg	ebnisse	e der Untersuchungen des durchströmten Behälters	75
	6.1	Einflus	ss der Füllhöhe	77
	6.2	Einflus	s des Neigungswinkels	81
	6.3	Einflus	s der Behälter-Innengeometrie	83
	6.4	Einflus	ss der Anregung	85
7	Zus	ammer	nfassung	87
\mathbf{Li}	terat	urverz	eichnis	i
A	Einf	fluss de	er Anregung (Profil 1)	xi
в	Einf	fluss de	er Anregung (Profil 2)	xvii
\mathbf{Se}	lbstä	indigke	eitserklärung	xxiii

Abbildungsverzeichnis

1.1	Entwicklung des Kraftfahrzeugbestandes in Deutschland 2009 bis 2020. [Kraftfahrt-Bundesamt, 2020b]	2
2.1	Strömungsformen für Gas-Flüssigkeitsströmungen in horizontalen (a) und vertikalen (b) Rohren [Kraume, 2012]	6
2.2	(a) Kugelförmiger LNG-Tank der Firma Moss Maritime (b) Prismatischer Membrantank der Firma GTT. Bilder entnommen aus Mokhatab et al.	-
0.9	[2014]	(
2.3 2.4	Wellenbildung in Abhängigkeit der Anregungsfrequenz. [Ercolanelli et al.,	0
<u>م</u> ۲	$2018] \dots \dots$	10
2.5	Beispiele fur typische Grenzflachenbewegungen fur (a) flache, (b) mittlere, (c) kritische und (d) tiefe Füllhöhen im horizontal angeregten rechtwinkli-	
	gen Tank mit Anregungsfrequenz nahe der Eigenfrequenz. [Faltinsen und	11
9.6	Drüft tür de mit (a) einem estet miesken Engil eitemed [Dalien et al. 2014]	11
2.0	und (b) 6 Freibeitsgraden [Molin und Remy, 2012]	19
2.7	Druckverläufe verschiedener Sensortypen. Abbildung entnommen aus [Kim	12
	et al. 2015]	15
2.8	Prüfstände zur Bestimmung der Geschwindigkeit auf der Grenzfläche (a)	
	und zur Bestimmung der vertikalen Geschwindigkeit (b) [Eswaran und	
	Saha, 2011]	16
2.9	Prüfstand zur Bestimmung der Geschwindigkeit auf einer vertikalen Schnit-	
	tebene in der Tankmitte [Simonini et al., 2019]	17
2.10	Entwicklung der Geschwindigkeit nahe der freien Grenzfläche während	
	eines Flip-Through-Events [Lugni et al., 2006]	18
2.11	Geschwindigkeit der Sloshing-Welle bei $t/T = a 3.76$, b 3.78, c 3.80, and	10
0.10	d 3.82 [Song et al., 2013]	19
2.12	Ansichten der Entwicklung der freien Grenznache. Vergleich zwischen ex-	
	casse et al. 2013]	20
2.13	Schematische Darstellung der schallemittierenden Strömungsphänomene	20
2.10	[Wachowski et al., 2010]	21
2.14	Vergleich und Wavelet-Analyse der drei Geräuschkategorien [Wachowski	-1
-	et al., 2010]	21

2.15	Dominierende Sloshingevents in Experiment und Simulation [Wachowski et al., 2010]	22
2.16	Bildung eines freien Grenzflächenwirbels und seine Weiterleitung in die Turbine [Suerich-Gulick et al., 2014]	23
2.17	Wirbelklassifizierung nach Hecker [1987], Abbildung entnommen aus [KSB, 2021]	24
2.18	Luftkern-Wirbelstruktur im (a) numerischen und (b) experimentellen Mo- dell [Sarkardeh, 2017]	25
2.19	Aufnahmen von verschiedenen Wirbelstadien: a) Stadium 1, b) Stadium 2, c) Stadium 3, d) Stadium 4	25
4.1	Maße der Vergleichsgeometrie und Position der Drucksensoren und verti- kalen Trennwände (alle Angaben in mm)	35
4.2	Skizze der Vergleichsgeometrie mit Trennwand-Einbau	36
4.3	Behälterboden der Vergleichsgeometrie mit Edelstahladaptern zur Auf-	9.0
44	nahme der Drucksensoren	36
4.4	Lage von Trennwänden und Tauchrohr wurden diese blau und rot markiert.	37
4.5	Aufbau des Kühlkreislauf-Prüfstands. (1) Ausgleichsbehälter Porsche 991	
	Carrera, (2) Motorblock, (3) Kühlmittelpumpe, (4) Elektromotor, (5)	
4.0	Wärmeübertrager, (6) Durchflussmesser	39
4.6	Links: Modifiziertes Thermostatventil. Rechts: Lage des Pumpenzulaufs mit (1) Acrylglasabdeckung und (2) Riemenscheibe zum Pumpenantrieb	30
4.7	Schleppkanal mit Hochleistungsschleppsystem des Lehrstuhls Strömungs-	55
	maschinen [Lehrstuhl Strömungsmechanik, 2019]	40
4.8	Messaufbau am HLSS. (1) Behälter, (2) Kamera, (3) Lichtschnittoptik, (4) Laserkopf.	41
4.9	Aufbau des dynamischen Prüfstands mit der Vergleichsgeometrie (links) und der Realgeometrie (rechts). (1) Rotationseinheit, (2) Drucksensoren,	
	(3) Kamera, (4) Ultraschallsensor	42
4.10	Links: Lichtschnittoptik mit (1) Zylinderlinse und (2) Umlenkspiegel. Rechts:	49
4 11	Schnitt durch die vernetzten Behältergeometrien (a) Vergleichsgeometrie	45
1.11	strukturiertes Netz (grob). (b) Realgeometriei. (a) vergeteinsgeometrie,	46
4.12	Schwenkbewegung des Behälters.	46
4.13	Druckverläufe für Vergleichsgeometrie. Vergleich dreier verschiedener Netz-	47
4.14	Lage der Grenzfläche für Vergleichsgeometrie. Vergleich dreier verschie-	-11
	dener Netzgrößen.	48
4.15	Druckverläufe für Vergleichsgeometrie. Vergleich dreier verschiedener Tur-	
	bulenzmodelle.	49
4.16	Lage der Grenzfläche für Vergleichsgeometrie. Vergleich dreier verschie- dener Turbulenzmodelle.	50

5.1	Druckverlauf an Position p_1 und entsprechende Aufnahmen der Flüssig- keitsverteilung für Füllhöhe F1 für den AGB ohne und mit vertikalen	
	Trennwänden. Die Position der Drucksensoren ist rot markiert.	54
5.2	Druckverlauf an Position p_1 und entsprechende Aufnahmen der Flüssig-	
	keitsverteilung für Füllhöhe F2 für den AGB ohne und mit vertikalen	
	Trennwänden. Die Position der Drucksensoren ist rot markiert.	55
5.3	Experimentell bestimmte Druckverläufe und Einfluss der Trennwände bei	
	Füllhöhe F1.	55
5.4	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe Fl. (a) ohne Trennwände (b) mit vertikalen Trennwänden. Die Position	
	der Drucksensoren ist rot markiert	56
5.5	Experimentell bestimmte Druckverläufe und Einfluss der Trennwände bei	00
0.0	Füllhöhe F?	56
5.6	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe	00
0.0	F2 (a) ohne Trennwände (b) mit vertikalen Trennwänden. Die Position	
	der Drucksensoren ist rot markiert	57
5.7	Verlauf der Flüssigkeitsverteilung für Füllhöhe F1 und AGB ohne Trenn-	01
	wände. Die Position der Drucksensoren ist mit roten Bauten markiert.	
	Die durchgezogene rote Linie stellt die simulierte Grenzfläche dar	59
5.8	Verlauf der Flüssigkeitsverteilung für Füllhöhe F2 und AGB ohne Trenn-	00
0.0	wände. Die Position der Drucksensoren ist mit roten Bauten markiert.	
	Die durchgezogene rote Linie stellt die simulierte Grenzfläche dar	59
5.9	Verlauf der Flüssigkeitsverteilung für Füllhöhe F1 und AGB mit vertika-	00
0.0	len Trennwänden. Die Position der Drucksensoren ist mit roten Bauten	
	markiert. Die durchgezogene rote Linie stellt die simulierte Grenzfläche dar	60
5 10	Verlauf der Flüssigkeitsverteilung für Füllhöhe F2 und AGB mit vertika-	00
0.10	len Trennwänden. Die Position der Drucksensoren ist mit roten Bauten	
	markiert. Die durchgezogene rote Linie stellt die simulierte Grenzfläche dar	60
5.11	Druckverlauf an drei Sensorpositionen für Füllhöhe F1 und den AGB ohne	00
0.11	Einhauten (schwarze Kurve: Experiment, rote Kurve: Simulation)	62
5.12	Druckverlauf an drei Sensorpositionen für Füllhöhe F2 und den AGB ohne	
0.12	Einbauten, (schwarze Kurve: Experiment, rote Kurve: Simulation)	62
5.13	Druckverlauf an drei Sensorpositionen für Füllhöhe F1 und den AGB mit	
	vertikalen Trennwänden, (schwarze Kurve: Experiment, rote Kurve: Si-	
	mulation)	62
5.14	Druckverlauf an drei Sensorpositionen für Füllhöhe F2 und den AGB mit	-
-	vertikalen Trennwänden, (schwarze Kurve; Experiment, rote Kurve; Si-	
	mulation)	63
5.15	Geschwindigkeitsfeld für AGB ohne Trennwände und $T/T_0 = 0.65$ (links:	
0.10	Experiment, rechts: Simulation).	64
5.16	Geschwindigkeitsfeld für AGB ohne Trennwände und $T/T_0 = 0.73$ (links:	÷.
5.10	Experiment, rechts: Simulation), Die gestrichelte schwarze Linie markiert	
	den kritischen Lichtbereich. Das gestrichelte graue Rechteck repräsentiert	
	den in Abbildung 5.17 detailliert dargestellten Ausschnitt	65
		~~

5.17	Detailaufnahme des Geschwindigkeitsfeldes für $T/T_0 = 0.73$ (oben: Experiment, unten: Simulation). Die gestrichelte schwarze Linie zeigt die	
	diskutierten Wirbelbereiche	65
5.18	Geschwindigkeitsfeld für AGB ohne Trennwände und $T/T_0 = 0.78$ (links: Experiment, rechts: Simulation). Die gestrichelte schwarze Linie markiert den kritischen Lichtbereich, die grauen Linien kennzeichnen die diskutier- ten Strömungsphänomene	66
F 10	Zeitlichen Werlauf der unternechten Deschleurinnen und Gebeurihmenfle	67
5.19 5.20	Druckverlauf an drei Sensorpositionen für Füllhöhe F1, Profil 3 und AGB ohne Einhauten (graue Kurve: translatorische Beschleunigung blaue Kur-	07
	ve: dynamisches Kippen)	68
5.21	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe F1, Profil 3 und AGB ohne Einbauten. (a) translatorische Beschleunigung,	00
5.22	(b) dynamisches Kippen. Die Position der Drucksensoren ist rot markiert. Druckverlauf an drei Sensorpositionen für Füllhöhe F2, Profil 3 und AGB	69
	ohne Einbauten. (graue Kurve: translatorische Beschleunigung, blaue Kurve: dynamisches Kippen)	70
5.23	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe F2, Profil 3 und AGB ohne Einbauten. (a) translatorische Beschleunigung, (b) dynamisches Kippen. Die Position der Drucksensoren ist rot markiert.	70
5.24	Druckverlauf an drei Sensorpositionen für Füllhöhe F1, Profil 3 und AGB mit vertikalen Trennwänden. (graue Kurve: translatorische Beschleuni-	
5.25	gung, blaue Kurve: dynamisches Kippen)	71
	ist rot markiert	72
5.26	Druckverlauf an drei Sensorpositionen für Füllhöhe F2, Profil 3 und AGB mit vertikalen Trennwänden. (graue Kurve: translatorische Beschleuni-	
5.27	gung, blaue Kurve: dynamisches Kippen)	73
	F2, Profil 3 und AGB mit vertikalen Trennwänden. (a) translatorische Beschleunigung, (b) dynamisches Kippen. Die Position der Drucksensoren	
	ist rot markiert	73
5.28	Druckverlauf an zwei Sensorpositionen für die Realgeometrie. (graue Kurve: translatorische Beschleunigung, blaue Kurve: dynamisches Kippen)	
	Die Position der Drucksensoren ist in der Skizze markiert.	74
6.1	Innenvolumen der Realgeometrie. Die Trennwände sind blau markiert, das Einlassfallrohr rot. Die einzelnen Kammern sind für eindeutige Auswer-	
	tung nummeriert. (a) Einlass, (b) Auslass	76
6.2	Pfropfenströmung am Behälterauslass bei einer Füllmenge von 640 ml. Links im Bild befindet sich der Ultraschallsensor.	76

6.3	Aufnahme des Wirbeltrichters in Kammer 6 bei einer Füllmenge von 720 ml. Die Skizze zeigt den Blickwinkel der Aufnahme	77
6.4	Verlauf der Stromlinien (blau) in Kammer 3 und 6 in Frontalansicht und	
	Draufsicht für eine Füllmenge von 1030 ml. In rot sind die Isoflächen für	-
	Q = 1271/s dargestellt.	78
6.5	Aufnahme der Wassergrenzfläche in Frontalansicht nach 4,5 s Strömung	=0
0.0	bei einer Fullmenge von 720 ml. Oben: Experiment, unten: Simulation	79
0.0	Aumanme der Wassergrenzfläche in Frontalansicht nach 1,58 Strömung	80
67	Bilengierung des Messengtung durch Kommon 6 für eine Füllmenge von	80
0.7	1030 ml	81
6.8	Simulation der Lage der Wassergrenzfläche nach 1.5s. Strömung bei um	01
0.0	45° geneigtem AGB mit 1030 ml Füllmenge, a) Bremsen, b) Bechtskurve.	
	c) Beschleunigung	82
6.9	Variationen der Trennwand (1-3) sowie AGB ohne Einbauten (rechts).	
	Geometrie 1: Entfernung des Sensorblocks, Geometrie 2: Vergrößerung	
	des Trennwanddurchbruchs, Geometrie 3: Kombination aus 1 und 2	83
6.10	Lufteintrag verschiedener Behältergeometrien im Zeitverlauf bei um 45°	
	geneigtem AGB mit 1030 ml Füllmenge	83
6.11	Simulation der Lage der Wassergrenzfläche verschiedener Behältergeome-	
	trien nach $4\mathrm{s}$ Strömung bei um 45° geneigtem AGB mit 1030 ml Füllmen-	
	ge. a) Original, b) Geometrie 2, c) Ohne Trennwand $\hfill\hfill$	84
6.12	Lufteintrag verschiedener Behältergeometrien im Zeitverlauf bei dyna-	
	misch beschleunigtem und geneigtem AGB mit 1030 ml Füllmenge	85
6.13	Lage der Wassergrenzfläche verschiedener Behältergeometrien bei $T/T_0 =$	
	0,4 bei dynamisch beschleunigtem und geneigtem AGB mit 1030 ml Full-	
	Trongenad	86
		80
A.1	Druckverlauf an drei Sensorpositionen für Füllhöhe F1, Profil 1 und AGB	
	ohne Einbauten. (graue Kurve: translatorische Beschleunigung, blaue Kur-	
	ve: dynamisches Kippen)	xii
A.2	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe	
	F1, Profil 1 und AGB ohne Einbauten. (a) translatorische Beschleunigung,	
	(b) dynamisches Kippen. Die Position der Drucksensoren ist rot markiert.	xii
A.3	Druckverlauf an drei Sensorpositionen für Füllhöhe F2, Profil 1 und AGB	
	ohne Einbauten. (graue Kurve: translatorische Beschleunigung, blaue Kur-	
	ve: dynamisches Kippen)	X111
A.4	E2. Drefil 1 und ACD abre Einhauten (a) translaterische Deschlaunigrung	
	(b) dynamisches Kippen. Die Position der Drucksonsoren ist ret markiert	viii
A 5	Druckverlauf an drei Sensorpositionen für Füllhöhe F1 Profil 1 und ACR	лш
11.0	mit vertikalen Trennwänden. (graue Kurve, translatorische Reschleuni-	
	gung, blaue Kurve: dynamisches Kippen)	xiv

A.6	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe F1, Profil 1 und AGB mit vertikalen Trennwänden. (a) translatorische Beschleunigung, (b) dynamisches Kippen. Die Position der Drucksensoren
	ist rot markiert xiv
A.7	Druckverlauf an drei Sensorpositionen für Füllhöhe F2, Profil 1 und AGB mit vertikalen Trennwänden. (graue Kurve: translatorische Beschleuni- gung blaue Kurve: dumamisches Kinpen)
A.8	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe F2 Profil 1 und ACB mit vertikalen Trennwänden (a) translatorische
	Beschleunigung, (b) dynamisches Kippen. Die Position der Drucksensoren
	ist rot markiert
B.1	Druckverlauf an drei Sensorpositionen für Füllhöhe F1, Profil 2 und AGB
	ohne Einbauten. (graue Kurve: translatorische Beschleunigung, blaue Kur-
_	ve: dynamisches Kippen)
B.2	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe
	F1, Profil 2 und AGB ohne Einbauten. (a) translatorische Beschleunigung,
ВЗ	(b) dynamisches Kippen. Die Fosition der Drucksensoren ist fot markiert. xvin Druckverlauf an drei Sensorpositionen für Füllhöhe F2 Profil 2 und ACB
D.0	ohne Einbauten (graue Kurve: translatorische Beschleunigung blaue Kur-
	ve: dynamisches Kippen)
B.4	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe
	F2, Profil 2 und AGB ohne Einbauten. (a) translatorische Beschleunigung,
	(b) dynamisches Kippen. Die Position der Drucksensoren ist rot markiert. xix
B.5	Druckverlauf an drei Sensorpositionen für Füllhöhe F1, Profil 2 und AGB
	mit vertikalen Trennwänden. (graue Kurve: translatorische Beschleuni-
DE	gung, blaue Kurve: dynamisches Kippen)
Б.0	F1 Profil 2 und ACP mit vortikelen Tronnwönden (a) transleterische
	Beschleunigung (b) dynamisches Kippen Die Position der Drucksensoren
	ist rot markiert
B.7	Druckverlauf an drei Sensorpositionen für Füllhöhe F2. Profil 2 und AGB
	mit vertikalen Trennwänden. (graue Kurve: translatorische Beschleuni-
	gung, blaue Kurve: dynamisches Kippen)
B.8	Verlauf der experimentell bestimmten Flüssigkeitsverteilung für Füllhöhe
	F2, Profil 2 und AGB mit vertikalen Trennwänden. (a) translatorische
	Beschleunigung, (b) dynamisches Kippen. Die Position der Drucksensoren
	ist rot markiert

Tabellenverzeichnis

tanks, Tanklastern und Pkw-Kraftstofftanks ohne Ansprudigkeit und Vergleich mit den Bedingungen im Ausglei Sportwagen	ch auf Vollstän- hsbehälter von
4.1 Technische Daten des Schleppwagen-Hauptsystems (X-Ad	nse). [Lehrstuhl
Strömungsmechanik, 2019]	41
4.2 $$ Technische Daten der Rotationseinheit isel RDH-M. $$	42
4.3 Übersicht der verwendeten Messtechnik	44
4.4 Komponenten des optischen Systems und ihre Eigenschat	en 44
4.5 Elementgröße und -anzahl der untersuchten Rechennetze	(Vergleichsgeo-
metrie ohne Einbauten) und benötigte Rechendauer. $\ .$ $\ .$	47
4.6 $$ Unterschiede der simulierten Druckmaxima für drei Pun	te bezogen auf
das feine, strukturierte Netz (Vergleichsgeometrie ohne E	nbauten) 47
4.7 Elementgröße und -anzahl der untersuchten Rechennetze σ	er Realgeometrie. 48
4.8 Übersicht der untersuchten Simulationsparameter	49
5.1 Reduktion der Wanddrücke durch die vertikalen Trennwä	nde
5.2 Abweichung der simulierten von den gemessenen Druckm	axima 63
5.3 Basisdaten der untersuchten Beschleunigungs- und Schwe	nkprofile 67
6.1 Übersicht über die untersuchten Füllhöhen und die auftr	etenden Phäno-
mene	79
6.2 Übersicht über die untersuchten Neigungswinkel und d	e auftretenden
Phänomene	82
6.3 Übersicht über die untersuchten Geometrievariationen un	den auftreten-
den Lufteintrag	84

Formelverzeichnis

2.1:	Sloshing-Eigenfrequenz
2.2:	Froudezahl
2.3:	Druckskalierung
2.4:	Zeitskalierung
3.1:	Kontinuitätsgleichung
3.2:	Impulsbilanz
3.3:	Stokes'scher Reibungsansatz
3.4:	Navier-Stokes-Gleichung
3.5:	Massengemittelte Strömungsgeschwindigkeit
3.6:	Zeitliche Mittelung der Strömungsgrößen
3.7:	Zerlegung der Strömungsgrößen
3.8:	Gemittelte Kontinuitätsgleichung
3.9:	Gemittelte Navier-Stokes-Gleichung
3.10:	Reynolds-Spannungen
3.11:	Boussinesq-Ansatz
3.12:	Gasvolumenanteil
3.13:	Gasvolumenstromanteil
3.14:	Phasenschlupf
3.15:	Relativgeschwindigkeit
3.16:	Homogenes Zweiphasenmodell
3.17:	Kontinuitätsgleichung (zweiphasig, homogen)
3.18:	Navier-Stokes-Gleichung (zweiphasig, homogen)
3.19:	Mittlere Stoffeigenschaften
3.20:	Kontinuitätsgleichung (zweiphasig, inhomogen)
3.21:	Navier-Stokes-Gleichung (zweiphasig, inhomogen)
4.1:	Winkel zur Modellierung des Fahrzustandes
5.1:	Winkel zur Modellierung des Fahrzustandes
6.1:	Q-Kriterium
6.2:	Geschwindigkeitsgradiententensor