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ABSTRACT

This research thesis discusses the impact of unsteady turbulence effects on
the numerical prediction of aerodynamic excitation mechanisms in turbo-
machinery flows. The limitations of existing solver structures based on a
formulation in the frequency domain - the Harmonic Balance method, that
is - promises to consider turbulence in an unsteady framework. Existing
limitations to this are assessed and a solution approach to alleviate the
identified sources of numerical instabilities is identified by the application of
a Lanczos-type filter method.

After proper implementation and validation, the Harmonic Balance method
enhanced by the filtering is used to evaluate the impact of unsteady turbu-
lence on design tasks of aeroelastic interest. These are given by the prediction
of the aerodynamic excitation and the aerodynamic damping, respectively.
The impact of unsteady turbulence is investigated and quantified for both
subsonic and transonic flow conditions. The evaluation of its quality and
quantity is used to assess numerical solution approaches differing in the
degree of exploited model order reduction. The assessed methods suffer from
an increasing loss of information though benefit from lower requirements
with regard to computational effort and run time.






ZUSAMMENFASSUNG

Die vorgelegte Promotionsschrift behandelt die Fragestellung des Einflusses
instationérer Turbulenzeffekte auf die Vorhersage der aerodynamischen An-
regung von Turbinen- und Verdichterkomponenten. Im Speziellen werden im
Zuge der Arbeit zunichst die Ursachen fiir zu Beginn der Arbeit festgestellte
Instabilitdten bei Anwendung des betrachteten numerischen Losungsver-
fahren im Frequenzbereich identifiziert und durch Implementierung einer
geeigneten Filtermethodik im Quellcode behoben.

Die Anwendung des stabilisierten Losungsverfahrens in Verbindung mit
einer entsprechenden Validierung erlaubt im Anschluss eine Bewertung
des Einflusses der genannten instationdren Turbulenzeffekte auf die in ae-
romechanischer Hinsicht relevanten Auslegungsaufgaben der Vorhersage
von aerodynamischer Zwangserregung und Dampfung. Dies wird sowohl
fiir sub-, als auch fiir transsonische Stromungszustidnde untersucht und
bewertet. Die Bewertung des Einflusses instationédrer Turbulenzeffekte in
Hinsicht auf Qualitdt und Quantitédt wird zur Analyse verschiedener numeri-
scher Losungsansétze verwendet, die aufgrund eines steigenden Grades von
Modell-Ordnungs-Reduktion zunehmend unter Verlust an Information leiden,
jedoch durch sinkende Anforderungen an die erforderliche Rechenleistung
und Laufzeit profitieren.
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