

Forschungsberichte aus dem **wbk** Institut für Produktionstechnik Karlsruher Institut für Technologie (KIT)

**Bastian Rothaupt** 

Dämpfung von Bauteilschwingungen durch einstellbare Werkstückdirektspannung mit Hydrodehnspanntechnik



Forschungsberichte aus dem wbk Institut für Produktionstechnik Karlsruher Institut für Technologie (KIT)

Hrsg.: Prof. Dr.-Ing. Jürgen Fleischer Prof. Dr.-Ing. Gisela Lanza Prof. Dr.-Ing. habil. Volker Schulze

**Bastian Rothaupt** 

Dämpfung von Bauteilschwingungen durch einstellbare Werkstückdirektspannung mit Hydrodehnspanntechnik

**Band 256** 





# Dämpfung von Bauteilschwingungen durch einstellbare Werkstückdirektspannung mit Hydrodehnspanntechnik

Zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des Karlsruher Instituts für Technologie (KIT) angenommene

DISSERTATION

von

M.Sc. Bastian Rothaupt

Tag der mündlichen Prüfung: 13.06.2022

Hauptreferent: Prof. Dr.-Ing. Jürgen Fleischer Korreferent: Univ.-Prof. Friedrich Bleicher



## Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2022

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8735-2 ISSN 0724-4967

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de



### Vorwort des Herausgebers

Die schnelle und effiziente Umsetzung innovativer Technologien wird vor dem Hintergrund der Globalisierung der Wirtschaft der entscheidende Wirtschaftsfaktor für produzierende Unternehmen. Universitäten können als "Wertschöpfungspartner" einen wesentlichen Beitrag zur Wettbewerbsfähigkeit der Industrie leisten, indem sie wissenschaftliche Grundlagen sowie neue Methoden und Technologien erarbeiten und aktiv den Umsetzungsprozess in die praktische Anwendung unterstützen.

Vor diesem Hintergrund wird im Rahmen dieser Schriftenreihe über aktuelle Forschungsergebnisse des Instituts für Produktionstechnik (wbk) am Karlsruher Institut für Technologie (KIT) berichtet. Unsere Forschungsarbeiten beschäftigen sich sowohl mit der Leistungssteigerung von additiven und subtraktiven Fertigungsverfahren, den Produktionsanlagen und der Prozessautomatisierung sowie mit der ganzheitlichen Betrachtung und Optimierung der Produktionssysteme und -netzwerke. Hierbei werden jeweils technologische wie auch organisatorische Aspekte betrachtet.

Prof. Dr.-Ing. Jürgen Fleischer

Prof. Dr.-Ing. Gisela Lanza

Prof. Dr.-Ing. habil. Volker Schulze





#### Vorwort des Verfassers

Die vorliegende Dissertation entstand im Wesentlichen während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT).

Für die sehr guten Rahmenbedingungen des wissenschaftlichen Arbeitens am Institut, den fachlichen Austausch und die persönliche Förderung gilt mein Dank Prof. Jürgen Fleischer. Herrn Prof. Friedrich Bleicher danke ich für den wissenschaftlichen Austausch zum Thema und die Übernahme des Korreferats, sowie Prof. Albert Albers für die Übernahme des Prüfungsvorsitz.

Eine wissenschaftliche Arbeit entsteht immer im Austausch und der Diskussion mit Wegbegleitern. Danken möchte ich insbesondere meinen ehemaligen Kollegen und Studenten Quirin Spiller, Andreas Spohrer, Benedikt Klee, Markus Netzer, Philipp Gönnheimer, Markus Schäfer, Simon Merz, David Barton, Jonas Hillenbrand, Tobias Storz, Sven Roth, Marco Friedmann, Sven Coutandin, Patrick Rottmann sowie Jan Corduan. Allen Mitarbeitern des Instituts aus Werkstatt, Verwaltung und IT danke ich für ihre Unterstützung. Für den fachlichen Austausch danke ich Philipp Schräder, Sebastian Scharinger sowie Thomas Retzbach.

Für ihre große Unterstützung während meines Studiums danke ich meinen Eltern. Für ihren Rückhalt, ihre Ermutigung und ihre Geduld auf dem Weg zur Promotion danke ich meiner Frau Pamela und meinen beiden Kindern Fabian und Kira.

Aalen, 13.06.2022

Bastian Rothaupt



#### Abstract

During the machining of thin-walled parts, solid body vibrations are induced in the work-piece by the tooth meshing during the milling process, which occur as bending and torsional vibrations. These can have a negative effect on the machining result in terms of dimensional accuracy and surface quality and therefore have to be reduced, particularly in finishing processes, in order to avoid expensive and time-consuming rework. Due to its position in the force flow, workpiece clamping technology offers potential for the damping of workpiece vibrations. Previous work focused on complex actively controlled systems or passive damping clamping technology, which does not allow the damping effect to be adjusted.

On the contrary, the present work investigates a semi-passive approach to damp and influence workpiece vibrations of thin-walled parts by means of direct workpiece clamping. The vibration properties of the workpiece in terms of natural frequency, damping and dynamic compliance are influenced by the adjustability of the axial pull-in force and the radial hydraulic expansion clamping technology acting on a clamping bolt connected to the workpiece. Using a functional prototype with a demonstrator part, it can be shown that the hydraulic expansion technology achieves a three times higher damping of the bending mode. By additionally optimizing the joint between the workpiece and the clamping device, a damping ratio of up to 6% is achieved. A prediction model is used to investigate the extent to which a component-independent prediction of the damping ratio as a function of the clamping forces is possible. Finally, the findings are used to derive design guidelines for the application-oriented implementation of workpiece direct clamping systems with hydraulic expansion technology.

Inhaltsverzeichnis

# Inhaltsverzeichnis

| Inh | altsv                           | erzeich                   | inis                                                                  | ı   |  |
|-----|---------------------------------|---------------------------|-----------------------------------------------------------------------|-----|--|
| Fo  | rmelz                           | eichen                    | l                                                                     | IV  |  |
| Ab  | kürzu                           | ıngsve                    | rzeichnis                                                             | VII |  |
| 1   | Einleitung                      |                           |                                                                       |     |  |
|     | 1.1                             | Motiva                    | ation                                                                 | 1   |  |
|     | 1.2                             | Zielse                    | tzung                                                                 | 3   |  |
|     | 1.3                             | Aufba                     | u der Arbeit                                                          | 4   |  |
| 2   | Stand der Technik und Forschung |                           |                                                                       |     |  |
|     | 2.1                             | Statio                    | näre Werkstückspanntechnik in Werkzeugmaschinen                       | 7   |  |
|     | 2.2                             | 2.2 Hydrodehnspanntechnik |                                                                       |     |  |
|     |                                 | 2.2.1                     | Funktionsweise und Aufbau                                             | 13  |  |
|     |                                 | 2.2.2                     | Anwendungsbeispiele und Einsatzgebiete                                | 14  |  |
|     |                                 | 2.2.3                     | Modellierungsansätze und simulative Untersuchungsergebnisse           | 17  |  |
|     | 2.3<br>Bau                      |                           | lierung, Simulation und Messung der Dämpfung von vingungen            | 19  |  |
|     |                                 | 2.3.1                     | Definition des Dämpfungsbegriffs                                      | 20  |  |
|     |                                 | 2.3.2                     | Beschreibung schwach gedämpfter Schwingungen                          | 21  |  |
|     |                                 | 2.3.3<br>Dämpf            | Experimentelle Bestimmung von Bauteilschwingungen und modaler<br>iung | 22  |  |
|     |                                 | 2.3.4                     | Modellierung von Dämpfungseffekten                                    | 26  |  |
|     | 2.4                             | Ansät                     | ze zur Schwingungsdämpfung in Werkzeugmaschinen                       | 29  |  |
|     |                                 | 2.4.1                     | Erhöhung der dynamischen Steifigkeit                                  | 30  |  |
|     |                                 | 2.4.2                     | Passiv dämpfende Zusatzsysteme                                        | 31  |  |
|     |                                 | 2.4.3                     | Aktiv dämpfende Zusatzsysteme                                         | 32  |  |
|     |                                 | 2.4.4                     | Semi-passiv und semi-aktiv dämpfende Zusatzsysteme                    | 33  |  |
|     | 2.5                             | Schwi                     | ngungsdämpfung in der Spanntechnik                                    | 34  |  |
|     |                                 | 2.5.1                     | Passiv dämpfende Spannsysteme                                         | 34  |  |
|     |                                 | 2.5.2                     | Aktiv dämpfende Spannsysteme                                          | 38  |  |

II Inhaltsverzeichnis

|     | 2.6          | Bewer   | tung des Stands der Technik und Forschung              | 41 |
|-----|--------------|---------|--------------------------------------------------------|----|
|     |              | 2.6.1   | Fazit zum Stand der Technik und Forschung              | 41 |
|     |              | 2.6.2   | Forschungsdefizit und Handlungsbedarf                  | 43 |
| 3   | Kor          | krete   | Zielsetzung und Vorgehensweise                         | 46 |
|     | 3.1          | Konkr   | ete Zielsetzung                                        | 46 |
|     | 3.2          | Vorge   | hensweise zur Zielerreichung                           | 46 |
| 4   | Fun          | ktions  | prinzip eines Werkstückdirektspannungssystems mit      |    |
| Hyd | lrode        | hnspa   | nntechnik                                              | 49 |
|     | 4.1          | Funkti  | onsprinzip und Wirkungsweise                           | 49 |
|     | 4.2          | Geom    | etrische Systembeschreibung der Hydrodehnspanntechnik  | 50 |
|     | 4.3          | Einflus | ssfaktoren auf die Hydrodehnspannkraft                 | 52 |
| 5   | Ent          | wurf u  | nd Umsetzung des Spannsystems                          | 55 |
|     | 5.1          | Anforc  | lerungs- und Funktionsanalyse                          | 55 |
|     | 5.2          | Prinzip | olösungen und Konzeptentwicklung                       | 57 |
|     | 5.3          | Konstr  | ruktive und fertigungstechnische Umsetzung             | 64 |
|     | 5.4          | Monta   | ge, Kalibrierung und Inbetriebnahme                    | 68 |
| 6   | Ein          | fluss d | es Spannsystems auf statische Bauteileigenschaften     | 70 |
|     | 6.1          | Auswa   | ahl eines Demonstratorbauteils                         | 70 |
|     | 6.2          | Model   | lbildung                                               | 71 |
|     |              | 6.2.1   | Strukturmodellierung                                   | 71 |
|     |              | 6.2.2   | Modellierung der Lastschritte und Randbedingungen      | 79 |
|     | 6.3          | Versch  | niebung der Dehnkammerwand                             | 82 |
|     | 6.4          | Axialv  | erschiebung des Spannbolzens                           | 84 |
|     | 6.5          | Analys  | se des Spannungszustands der Spannfläche               | 85 |
|     | 6.6          | Statis  | che Bauteilnachgiebigkeit                              | 85 |
| 7   | Ein          | flussar | nalyse auf schwingungsdynamische Bauteil-eigenschaften | 88 |
|     | 7.1 Experime |         | mentelle Modalanalyse                                  | 88 |
|     |              | 7.1.1   | Versuchsaufbau und Messmittel                          | 88 |
|     |              | 7.1.2   | Versuchsdurchführung                                   | 89 |

Inhaltsverzeichnis

|                                            |                              | 7.1.3    | Versuchsauswertung                                    | 92                                      |  |
|--------------------------------------------|------------------------------|----------|-------------------------------------------------------|-----------------------------------------|--|
|                                            | 7.2 Einfluss der Spannkräfte |          |                                                       |                                         |  |
|                                            |                              | 7.2.1    | Untersuchung der Eigenfrequenzen                      | 94                                      |  |
|                                            |                              | 7.2.2    | Untersuchung modaler Dämpfungsgrade                   | 96                                      |  |
|                                            |                              | 7.2.3    | Messung der dynamischen Nachgiebigkeiten              | 98                                      |  |
|                                            |                              | 7.2.4    | Erprobung des Spannsystems im Zerspanungsversuch      | 100                                     |  |
|                                            |                              | 7.2.5    | Zwischenfazit                                         | 102                                     |  |
|                                            | 7.3                          | Einfluss | s der Spannfläche                                     | 103                                     |  |
|                                            |                              | 7.3.1    | Umsetzung dämpfender Spannflächen                     | 103                                     |  |
|                                            |                              | 7.3.2    | Untersuchung der Eigenfrequenzen                      | 104                                     |  |
|                                            |                              | 7.3.3    | Vergleich modaler Dämpfungsgrade                      | 107                                     |  |
|                                            |                              | 7.3.4    | Vergleich dynamischer Nachgiebigkeiten                | 109                                     |  |
|                                            |                              | 7.3.5    | Fazit zur Untersuchung des Einflusses der Spannfläche | 110                                     |  |
| 8                                          | Iden                         | tifikati | on und Vorhersage modaler Dämpfungsparameter          | 111                                     |  |
|                                            | 8.1                          | Experin  | nentelle Bestimmung der modalen Dämpfung              | 111                                     |  |
|                                            |                              | 8.1.1    | Versuchsplanung                                       | 112                                     |  |
|                                            |                              | 8.1.2    | Experimentelle Bestimmung der modalen Dämpfung        | 113                                     |  |
|                                            | 8.2                          | Bestimi  | mung lokaler Dämpfungswerte                           | 115                                     |  |
|                                            | 8.3                          | Vorhers  | sagemodell modaler Dämpfungsparameter                 | 119                                     |  |
| 9                                          | Ges                          | taltung  | srichtlinien zur Umsetzung schwingungsdämpfender      |                                         |  |
| Spa                                        | nnsy                         | steme    | mit Hydrodehnspanntechnik                             | 124                                     |  |
| 10                                         | Zus                          | ammen    | fassung und Ausblick                                  | 128                                     |  |
|                                            | 10.1                         | Zusamı   | menfassung                                            | 128                                     |  |
|                                            | 10.2                         | Ausblic  | k                                                     | 131                                     |  |
| Lite                                       | ratur                        | verzeic  | hnis                                                  | VIII                                    |  |
|                                            |                              |          | XIV                                                   |                                         |  |
| Abbildungsverzeichnis  Tabellenverzeichnis |                              |          | XVII                                                  |                                         |  |
|                                            |                              |          |                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
| Wis                                        | sens                         | cnaftlic | cher und beruflicher Werdegang                        | XIX                                     |  |