Numerical Investigation of Aerodynamic and Aeroacoustic Characteristics of Small Vertical Axis Wind Turbines

Numerical Investigation of Aerodynamic and Aeroacoustic Characteristics of Small Vertical Axis Wind Turbines

A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart in partial fulfilment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.)

by

Amgad Magdy Ali Hassan Dessoky

born in Cairo, Egypt

Committee chair: Prof. Dr.-Ing. Ewald Krämer

Committee member : Prof. Dr.-Ing.Dominique Thévenin

Date of defence: 11.10.2021

Institute of Aerodynamics and Gas Dynamics, University of Stuttgart 2022

Berichte aus der Strömungstechnik

Amgad Dessoky

Numerical Investigation of Aerodynamic and Aeroacoustic Characteristics of Small Vertical Axis Wind Turbines

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Düren 2022

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Siegen, Univ., Diss., 2021

Copyright Shaker Verlag 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-8626-3 ISSN 0945-2230

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9

Internet: www.shaker.de • e-mail: info@shaker.de

Declaration of Authorship

I herewith declare that I have produced this thesis without the prohibited assistance of third parties and without making use of aids other than those specified; notions taken over directly or indirectly from other sources have been identified as such. This thesis has not previously been presented in identical or similar form to any other German or foreign examination board.

Stuttgart, 11 Jan 2021

Acknowledgements

This dissertation was addressed when I was pursuing my doctoral degree, where I was allowed to conduct systematic investigations in the wind energy field in an extremely healthy scientific working environment. In this particular section, I would like to reveal my gratitude and appreciation towards the people supporting me throughout the completion of the studies.

I am greatly indebted to my supervisor Prof. Ewald Krämer. It has been a great honor for me to be his doctoral student in such a substantial scientific organization IAG. I am incredibly grateful for his support, invaluable guidance, and his continuing help. I also wish to thank him for providing a wonderful work atmosphere and facilities. He strongly inspired me and taught me how the real responsible person should be.

The partner who has a significant role throughout the achievement of this work is Dr. Thorsten Lutz. Without his guidance and persistent help, this dissertation would not have been possible. I gratefully thank him for spending much time during our discussions. He has literally transformed me from a master student to a researcher, that was not easy. This made me learn a lot and significantly improved my skills to see the big picture. He is the ideal model for the leader.

Prof. Ewald Krämer and Dr. Thorsten Lutz made even the personal life more comfortable, especially for me as a foreigner, and they always tried to remove any obstacles. Thank you.

All the colleagues at the institute were very helpful, especially the wind energy group that significantly accelerated my research investigations. Here I want to express my appreciation explicitly without any order to Dr. Manuel Kessler, Mohamed El Sayed, Levin Klein, and Galih Bangga for their valuable suggestions and help.

I would like to express my thankfulness and gratitude to the German Academic Exchange Service (DAAD), Ministry of Higher Education and Scientific Research of the Arab Republic of Egypt (MoHE) for the funding through GERLS scholarship program. Without that, I was not able to work here in Germany. I will be forever indebted for the chance to further my studies.

I would like to thank my dearest mother, Huda Hashem, who is being all supportive, sacrifices, and put the utmost trust in me and to the choice I made in my life. I dedicate this thesis to the loving memory of my father, Magdy Dessoky, who has given me proper guidance since I was born and inspired me a lot in numerous fruitful discussions. I am grateful to my brothers, Islam, and Ayman for their support and encouragement.

Finally, my sincere thanks go to my wife, Hagar, who offered her invaluable support to help me during this long education journey, for accompanying me during the harsh time, for being with me in this precious moment of my life, for being my whole family and my rock. I also thank my beautiful children: Gamila, Hassna, Zeina, and Zein, for always making me smile. I hope that one day they can read these words and understand why I spent so much time in my office.

Contents

C	onte	nts			i			
Li	ist of	Figur	\mathbf{s}		v			
Li	ist of	Table			xiii			
Li	ist of	Symb	ols		$\mathbf{x}\mathbf{v}$			
A	bstra	ct			xix			
K	urzfa	ssung			xxi			
1	Introduction							
	1.1	Backg	ound and Motivat	tion	. 1			
	1.2	State	f the Art		. 6			
	1.3	Thesis	Objectives		. 11			
	1.4	Thesis	Outline		. 11			
2	Res	earch	Methodology an	d Model Validation	13			
	2.1	Nume	ical Simulations .		. 13			
		2.1.1	The FLOWer Solver					
		2.1.2	Approaches to turbulent flow computation					
			2.1.2.1 Reynold	ls-averaged Navier-Stokes equations (RANS) .	. 13			
			2.1.2.2 Hybrid	LES/RANS simulation method	. 15			
		2.1.3	Numerical setup		. 18			
		2.1.4	Noise prediction in VAWT					
		2.1.5	Inflow Turbulence	e generation	. 20			
			$2.1.5.1 \mathrm{Mann's}$	turbulence generation	. 20			
			2.1.5.2 Modelli	ng setup	. 22			
	2.2	Darrie	ıs vertical axis wi	nd turbine	. 24			
		2.2.1	Darrieus VAWT	noise	. 24			
		2.2.2	2 Model validation					
			2.2.2.1 Spatial	and time discretization	. 25			
			2.2.2.2 Aerodyi	namic model validation	. 31			

CONTENTS

			2.2.2.3	Turbulen	ce modeli	ng approaches				38
			2.2.2.4	Aeroacou	ıstic mode	el validation .				40
3	Nur	nerical	Invest	igation	of Noise	Generation	Mechanisms	of	a	
	Dar	rieus V								43
	3.1	Turbin	e noise .							43
		3.1.1	Defining	the acous	stic pressu	re field				44
		3.1.2	Instanta	neous nois	se mechan	isms of H-Roto	r VAWT			46
		3.1.3	Time-av	eraged noi	ise mechar	nisms in H-Rot	or VAWT			54
	3.2									58
	3.3	Impact	of airfoi	l thickness	3					62
	3.4	Impact	of turbi	ne solidity	·					66
		3.4.1	Constan	t aspect ra	atio					67
		3.4.2	Differen	t aspect ra	itios					72
	3.5	VAWT	geometr	rical up-sca	aling					77
	3.6	Summa	ary							80
4	Imp	act of	terrain	on the p	erforman	ce of Darrieu	ıs VAWT			83
	4.1	Impact	of isotro	pic small	scale turb	ulence				83
		4.1.1	Turbule	nce genera	tion					83
		4.1.2								85
		4.1.3	Aeroaco	ustics						89
	4.2	Perfori	nance ev	aluation o	f VAWT i	n different terr	ains			95
		4.2.1	Methodo	ology						96
		4.2.2	Results							98
			4.2.2.1	Aerodyn	amics					98
			4.2.2.2	Aeroacou	istics					108
	4.3	Summa	ary							108
5	Uno	convent	ional D	arrieus V	AWT					115
	5.1	Wind-l	lens							115
		5.1.1	Aerodyn	amic perf	ormance a	ssessment				116
		5.1.2	Aeroaco	ustic perfe	ormance as	ssessment				119
	5.2	Fixed ;	guide-var	nes						123
		5.2.1	_							123
		5.2.2								127
	5.3	Blade		-						128
		5.3.1								129
		5.3.2	v	-						134
	5.4	Summa		-						136

6	Cor	clusio	ns and Recommendations	137	
	6.1	Conclusions			
		6.1.1	Noise mechanisms and design parameters	137	
		6.1.2	Inflow turbulence level and impact of terrain	138	
		6.1.3	Unconventional turbine configurations	139	
6.2 Recommendations		mendations	139		
Re	efere	nces		143	