Breitbandige elektronische Nachbildung von Lithium-Ionen-Zellen für Anwendungen in der Elektromobilität

Christopher Lüke

Breitbandige elektronische Nachbildung von Lithium-Ionen-Zellen für Anwendungen in der Elektromobilität

Dissertation

zur Erlangung des Grades eines Doktor-Ingenieurs der Fakultät für Elektrotechnik und Informationstechnik an der Ruhr-Universität Bochum

von

Christopher Lüke aus Gelsenkirchen

Bochum 2022

Dissertation eingereicht am: 29.03.2021 Tag der mündlichen Prüfung: 15.10.2021

Referent: Prof. Dr.-Ing. Joachim Melbert Korreferent: Prof. Dr.-Ing. Andreas Steimel

Berichte aus der Elektrotechnik

Christopher Lüke

Breitbandige elektronische Nachbildung von Lithiumlonen-Zellen für Anwendungen in der Elektromobilität

> Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2021

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8581-5 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

1	Einleitung					
	1.1	Motivation und Ziel	1			
	1.2	Ansatz und Gliederung der Arbeit	3			
2	Lithium-Ionen-Zellen					
	2.1	Aufbau und Funktionsweise	7			
	2.2	eschreibung des Zellzustandes				
	2.3	Verhalten und Eigenschaften	3			
		$2.3.1 Langzeitverhalten \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	4			
		2.3.2 Kurzzeitverhalten	5			
	2.4	Gewinnung der Zellparameter	8			
		2.4.1 Alterungsstudie	ç			
		2.4.2 Messung der komplexen Zellimpedanz	ç			
	2.5	Einsatz von Li-Ionen-Zellen im Kraftfahrzeug	2			
		2.5.1 Energiespeicherarchitektur	:3			
	2.5.2 Batteriemanagementsysteme					
		2.5.2.1 Sicherheitsrisiken von Energiespeichern 2	:4			
		2.5.2.2 Überwachung und Balancierung von Batteriezellen 2	Ę			
		2.5.2.3 Zukünftige technische Entwicklungen	8			
3	Zell	emulation 3	1			
	3.1	Elektronische Zellemulatoren	2			
		3.1.1 Stand der Technik	4			
	3.2	Struktur des breitbandigen Zellemulators	8			
		3.2.1 Infrastruktur	ç			
		3.2.2 Systemstruktur Zellemulator 4	1			
	3.3	Elektronische Impedanznachbildung	.6			
		3.3.1 Stand der Technik	7			

		3.3.2	Flexible breitbandige Impedanzemulation	48
4	imulation von elektrochemischen Zellen	53		
	4.1	Anfor	derungen an die Zellsimulation	53
	4.2	Hardv	varemodul Echtzeitsimulator	55
		4.2.1	FPGA-basierter Signal prozessor	56
		4.2.2	Eingebettetes Computersystem	57
	4.3	Imple	mentierung des Zellmodells	60
		4.3.1	Modellkomplexität	64
		4.3.2	Kurzzeitmodell	67
			4.3.2.1 Laufzeitoptimierte digitale Filter	69
			4.3.2.2 Realisierung des Filters	73
		4.3.3	Langzeitmodell	78
			4.3.3.1 Lineare Effekte	80
			4.3.3.2 Leerlaufspannungskennlinie und Hysterese	80
		4.3.4	Thermisches Modell	84
			4.3.4.1 Berechnung der Verlustleistung	84
			4.3.4.2 Modellstruktur	85
5	Mes	sstechi	nik und Leistungselektronik	87
	5.1	Hardv	varemodul Messdatenerfassung	88
		5.1.1	Messkonzept	89
			5.1.1.1 Automatische Kalibrierung	91
		5.1.2	Eingangsstufe	93
			5.1.2.1 Frequenzgang und spektrales Rauschen	99
			5.1.2.2 Frequenzgangkompensation	100
		5.1.3	Analog-Digital-Umsetzung	101
			5.1.3.1 Signalpfade mit hoher Genauigkeit	102
			5.1.3.2 Signalpfade mit hoher Bandbreite	105
		5.1.4	Zusammenfassung	105
	5.2	Hardv	waremodul Leistungsendstufe	109
5.2.1 Endstufenkonzept			Endstufenkonzept	110
		5.2.2	DA-Umsetzung mit hoher Bandbreite und Dynamik	120
		5.2.3	Komplementäre Ausgangsstufe	124
			5.2.3.1 Verbreitete Endstufenkonzepte	124

			5.2.3.2	Gegentaktendstufe mit autonom geregelten Aus-				
				gangsstufen				
		5.2.4	Korrekt	ur von Offsetspannungen				
		5.2.5	sationskonzept					
		5.2.6	Ausgang	gsimpedanz und Linearität				
		5.2.7	Fehlerko	ompensation				
		5.2.8	Genauig	keit der Gleichspannungsausgabe 146				
		5.2.9	Zusamn	nenfassung				
	5.3	Hardy	varemodu	d Energieversorgung				
		5.3.1	Dynami	sche Leistungsversorgung				
	5.4	Eigens	sicherheit					
		5.4.1	Schutzb	eschaltung der analogen Eingänge 155				
			5.4.1.1	Klemmschaltung				
			5.4.1.2	Entladeschaltung				
		5.4.2	Schutzb	etrieb				
			5.4.2.1	Überwachung der Leistungsendstufe 158				
			5.4.2.2	Leistungsschalter				
6	Cha			des Emulationssystems 161				
U	6.1		-	, —,				
	6.2		emonstrationssystem					
	0.2	6.2.1		ung				
		6.2.2		ire Ausgangsimpedanz				
		6.2.3		ätsfehler				
	6.3			g				
	0.5	6.3.1		tverhalten				
		6.3.2		tverhalten				
	6.4	0.0	O	ation				
	0.4	6.4.1		statische Anregung				
		0.4.1	6.4.1.1	Synthetische Impedanz				
			6.4.1.2	Zellimpedanz prismatische Zelle				
		6.4.2	-	estatische Anregung				
		0.4.2	6.4.2.1	Synthetische Impedanz				
			6.4.2.1 $6.4.2.2$	Zellimpedanz Rundzelle				
			0.4.2.2	Zennipedanz Rundzene 102				

Inhaltsverzeichnis

	6.5	Zusammenfassung	183		
7	Zusammenfassung und Ausblick				
	7.1	Zusammenfassung	185		
	7.2	Ausblick	188		
Li	terat	curverzeichnis	191		
$\mathbf{S}\mathbf{y}$	mbo	ele und Abkürzungen	207		
Αl	Abbildungsverzeichnis				
Та	Tabellenverzeichnis				
Da	anks	agung	219		