Aufbau eines hybriden Simulationsmodells zur Vorhersage von Magnetfeldern im Gesamtfahrzeug

Aufbau eines hybriden Simulationsmodells zur Vorhersage von Magnetfeldern im Gesamtfahrzeug

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von Marcel Messer

aus Köthen (Anhalt)

eingereicht am: 02.06.2020

mündliche Prüfung am: 03.12.2021

1. Referent: Prof. Dr. rer. nat. Achim Enders

2. Referent: Prof. Dr.-Ing. Thomas Form

Druckjahr: 2022

Dissertation an der Technischen Universität Braunschweig, Fakultät für Elektrotechnik, Informationstechnik, Physik Berichte aus der Elektrotechnik

Marcel Messer

Aufbau eines hybriden Simulationsmodells zur Vorhersage von Magnetfeldern im Gesamtfahrzeug

> Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2021

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8418-4 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Diese Arbeit entstand während meiner dreijährigen Tätigkeit als konzerninterner Doktorand bei der AUDI AG in Ingolstadt. Mein besonderer Dank gilt Herrn Prof. Dr. rer. nat. Achim Enders vom Institut für Elektromagnetische Verträglichkeit der TU Braunschweig für die wissenschaftliche Betreuung, der konstruktiven Kritik und den zahlreichen fachlichen Diskussionen. Für die Übernahme des Zweitgutachtens und dem Vorsitz der Prüfungskommission möchte ich mich bei den Herren Prof. Dr.-Ing. Thomas Form und Prof. Dr.-Ing. Jörg Schöbel bedanken. Dem Leiter der EMV-Abteilung der AUDI AG, Herrn Dr.-Ing. Jörn Leopold gilt an dieser Stelle mein besonderer Dank für die Schaffung der nötigen Freiräume zur Gestaltung dieser Arbeit, sowie der Einbringung von Ideen und Anforderungen seitens der AUDI AG. Ebenfalls möchte ich mich bei allen aktiven und ehemaligen Kollegen der EMV-Abteilung der AUDI AG bedanken. Besonders sei hier namentlich Herr Dr.-Ing. Michael Kühn erwähnt, welcher mir im Jahr 2016 durch ein Industriepraktikum den Einstieg in das Unternehmen ermöglichte, meine Masterarbeit kompetent betreute, mir durch den Besuch von Fachkonferenzen das wissenschaftliche Umfeld näher brachte und dadurch mein Interesse an einer Industriepromotion weckte. Alle von mir im Rahmen einer Bachelor -oder Masterarbeit betreuten Studenten gilt mein besonderer Dank: Khaled Youssef, Linda Faust, Thomas Wenzl, Rahul Kanamarlapudi, Matthias Hammer, Christian Hildebrand, Timo Kaiser, Sahitya Yarragolla, Markus Günthner, Dominik Schmidt, Maximillian Müller und Joulia Ouchchilace. Des Weiteren möchte ich mich bei den folgenden Kollegen der EMV-Abteilung der Volkswagen AG in Wolfsburg für den konstruktiven Austausch zu Simulationsthemen und die schöne und lehrreiche gemeinsame Zeit auf internationalen Konferenzen bedanken: Oussama Sassi, Benjamin Willmann und Teresa Tumbrägel. Weiterhin danke ich meinem Stiefvater Maik für die Inspiration zur Wissenschaft in jungen Jahren. Für die seelische und materielle Unterstützung bedanke ich mich recht herzlich bei meiner Mutter Silvia und Ihrem Lebensgefährten Peer, meiner Tante Katja, meiner Cousine Nele, meinen Großeltern Christine und Arno und meinen Schwiegereltern Kathrin und Bernd. Meiner Freundin Claudia danke ich für Ihr Verständnis, Ihrer Hilfe und Ihrem Beistand in stressigen Zeiten. Ein letzter Dank geht an meine zwei besten Freunde Daniel und Denis für die Ablenkung zur rechten Stunde. Ohne euch alle wäre diese Arbeit nicht möglich gewesen.

Kurzfassung

Das Ziel dieser Dissertation war die ganzheitliche Betrachtung über die virtuelle Absicherung der elektromagnetischen Verträglichkeit zur Umwelt (EMVU) für niederfrequente Magnetfelder im Frequenzbereich von f = 1 Hz...400 kHz im Fahrzeug. Durch die zunehmende Elektrifizierung vieler Komfort- und Sicherheitsfunktionen sowie des Antriebsstranges kommt es in diesem Bereich zu erhöhten magnetischen Feldexpositionen, die sowohl wegen der technischen EMV wie auch aus Personenschutzgründen genau bekannt sein und ggf. begrenzt werden müssen. Die vorliegende Arbeit entwickelt dafür mit Hilfe von Feldsimulationstools eine virtuelle Absicherungsmethodik. Die felderregenden Stromverteilungen der Fahrzeugsysteme und Verkabelungen werden durch entsprechende Messungen bestimmt und in einer Datenbank für die virtuelle Absicherung zur Verfügung gestellt. Sowohl diese Vermessung mit dem de-facto-Industriestandard-Messgerät ELT 400 als auch die zeitvarianten Stromverläufe machen eine umfangreiche Fehleranalyse erforderlich, um die Einhaltung gerade von Personenschutz-Grenzwerten auch unter "worst-case"-Fehlersituationen zu gewährleisten. Beispielhaft werden die in dieser Arbeit erstellten Simulationsmodelle und Rechenmethoden für die Untersuchung einer EMVU relevanten Komponente angewandt.

Abstract

The aim of this PhD thesis was to make an approach for the holistic view of the numerical validation of low-frequency magnetic fields in the frequency range of f = 1 Hz...400 kHz in the context of Electromagnetic Compatibility and environment. The impaired electrical control of comfort and safety functions as well as the drive trains result in the associated magnetic field exposures in this area, which must be precisely known and, if necessary, must be limited due to reliable EMC as well as from personal protection law. The present work develops a virtual validation methodology for this with the help of field simulation tools. The field-stimulating power distribution of the vehicle systems and cabling are determined by appropriate measurements and made available in a database for virtual protection. Both this measurement with the industry standard measuring device ELT 400 and the time-variant current curves require an extensive error analysis in order to ensure compliance with personal protection limit values even under "worst-case" error situations. Finally the simulation models and calculation methods created in this work were used as examples for the investigation of an EMC relevant component.

Inhaltsverzeichnis

D	Danksagung			
K	Kurzfassung II			
A	Abstract			
In	nhaltsverzeichnis VII			
A	bkür	zungsverzeichnis XI		
Symbolliste XII				
1	Einleitung 1			
2	Gru	rundlagen		
	2.1	Materialgleichungen		
	2.2	Randbedingungen		
	2.3	Gesetz von Biot-Savart		
	2.4	Numerische Berechnungsmethoden 14		
		2.4.1 Die Finite Elementen Methode (FEM) 19		
	2.5	Das Huygenssche Prinzip 23		
	2.6	Schirmdämpfung 29		
	2.7	ICNIRP		

3	Ger	nauigk	eit von schnellen Fourier-Transformationen	33
	3.1	Signal	theorie	34
3.2 Einflussfaktoren		ssfaktoren	37	
		3.2.1	Abtastfrequenz	37
		3.2.2	Spektraler Leckeffekt	38
		3.2.3	Rauschen	41
	3.3	Paran	neterstudie	43
		3.3.1	Einfluss der Überabtastung (F_{os})	44
		3.3.2	Einfluss der Periodenanzahl (F_{nop})	46
		3.3.3	Einfluss des Signal-Rausch-Verhältnisses (SNR)	47
		3.3.4	Einfluss von $F_{\rm os}, F_{\rm nop}$ und dem SNR $\dots \dots \dots \dots \dots \dots$	50
4	Hyl	oride S	Simulation einer isotropen Magnetfeldsonde	57
	4.1 Modellierung über Punktrastermodell (PRM)		59	
		4.1.1	Erzeugung des Punktrasters	60
		4.1.2	Berücksichtigung der Spulenorientierung	63
		4.1.3	Punktrastermodell im homogenen Magnetfeld	65
		4.1.4	Punktrastermodell im inhomogenen Magnetfeld	70
		4.1.5	Abweichung zwischen lokaler und gemittelter magnetischer Flussdichte	78
4.2 Modellierung über Spulenkopfmodell (SKM)		llierung über Spulenkopfmodell (SKM)	80	
		4.2.1	Berechnung des Umrechnungsfaktors $k(f)$	83
		4.2.2	Validierung des Spulenkopfmodells	84
		4.2.3	Maximalwertsuche durch Anwendung des Feld-Äquivalenzprinzips	85
		4.2.4	Grenzen der Anwendbarkeit des Feld-Äquivalenzprinzips	89
	4.3	Imple	mentierung der WPM für die ICNIRP Referenzwert Simulation	93

5	Bas	is- und	Referenzwertsimulation für eine EMVU-relevante Komponent	e103
	5.1	ICNIR	P 1998/2010 Referenzwerte	103
		5.1.1	Aufbau des Simulationsmodells	105
		5.1.2	Vergleich zwischen simulierten und gemessenen Referenzwerten	107
	5.2	ICNIR	P 1998/2010 Basiswerte	110
		5.2.1	Stromdichten	112
		5.2.2	Interne elektrische Feldstärke	113
6	Kor	ıklusio	n und Ausblick	117
Literaturverzeichnis 123				
Abbildungsverzeichnis 131			131	
Tabellenverzeichnis 13			137	
A	A ICNIRP 1998/2010 Basis und Referenzgrenzwerte 139			139
в	B Qualitative Feldverteilung Helmholtz Spule 141			141
С	C Qualitative Feldverteilung <i>KLV</i> Untersuchung 143			143
D	Qua	ditativ	e Meshdarstellung KLV Untersuchung	145
Е	WL	C Unt	ersuchung	147

Abkürzungsverzeichnis

1D	eindimensional
3D	dreidimensional
CAD	Computer-aided Design
CPU	Central Processing Unit
CST MWS	Computer Simulation Technology Microwave Studio
DC	Tastgrad (engl. Duty Cycle)
DFT	Diskrete Fourier-Transformation
DSP	Digitaler Signalprozessor
DUT	Device Under Test
ELT	Exposure Level Tester
EMC	Electromagnetic Compatibility
EMF	Elektromagnetische Felder
EMV	Elektromagnetische Verträglichkeit
EMVU	Elektromagnetische Verträglichkeit zur Umwelt
ESB	Elektrisches Ersatzschaltbild
FD	Frequency Domain
FDM	Finite Differenzen Methode
FDS	Frequency Domain Solver
FDTD	Finite Difference Time Domain
FEM	Finite Element Methode
\mathbf{FFT}	$schnelle\ Fourier-Transformation\ (engl.\ Fast\ Fourier-Transformation)$
FFTW3	Fastest Fourier-Transform in the West
FIT	Finite Integrale Technik (engl. Finite Integration Technique)
\mathbf{FT}	Fourier-Transformation
GB	Gigabyte
GPU	Graphics Processing Unit
HV	Hochvolt
ICNIRP	International Commission on Non-Ionizing Radiation Protection
IRPA	International Radiation Protection Association

MB	Megabyte
MoM	Momentenmethode
PCB	Printed Circuit Board
PO	Physical Optics (Ray Tracing)
PRM	Punktrastermodell
PTL	Peak To Limit
PWM	Pulsweitenmoduliertes Signal
SKM	Spulenkopfmodell
SNR	Signal to Noise Ratio
STND	Standard
TB	Terabyte
TD	Time Domain
VW	Volkswagen
WLC	Wireless Charging System
WPM	Weighted Peak Method

$\mathbf{Symbolliste}$

А	Fläche
a	Radius des Sondenkopfes
$a_{\rm dipole}$	Radius des magnetischen Dipols
α	Drehung um X-Achse
В	magnetische Flussdichte (Skalar)
\vec{B}	magnetische Flussdichte (vektoriell)
$B_{\rm avg}$	gemittelte magnetische Flussdichte im Sondenkopf
B_{center}	lokale magnetische Flussdichte im Zentrum des Sondenkopfes
$B_{\rm coil}$	magnetische Flussdichte Spule im Punkteraster
$B_{\rm FP}$	magnetische Flussdichte infinitesimale Feldsonde im Punkteraster
$\vec{B}_{\mathrm{n}1}$	Normalkomponente der magnetischen Flussdichte (analog $\vec{H},\vec{E},\vec{D})$
\vec{B}_{t1}	Tangentialkomponente der magnetischen Flussdichte (analog $\vec{H},\vec{E},\vec{D})$
$B_{\rm x},B_{\rm y},B_{\rm z}$	magnetische Flussdichte für die jeweilige Spule der ELT-400
β	Drehung um Y-Achse
c_0	Lichtgeschwindigkeit im Vakuum
γ	Drehung um Z-Achse
D	elektrische Flussdichte (Skalar)
\vec{D}	elektrische Flussdichte (vektoriell)
$\mathrm{d}\vec{A}$	vektorielles Flächenelement
$\mathrm{d}\vec{F}$	Flächennormalvektor
DFT	Diskrete Fourier-Transformation (Funktionsgleichung)
$\mathrm{d}l$	Linienelement
$\mathrm{d}ec{l}$	vektorielles Linienelement
$d_{\rm struktur,min}$	kürzeste Abmessung in einer Struktur
dt	kleinster Zeitschritt
dz	kleinster Schritt im 1D Raumgitter in Z-Richtung
$\Delta B_{\rm max3}$	analytisch berechneter relativer Fehler zwischen $B_{\rm center}$ und $B_{\rm avg}$
$\Delta_{\rm rel}$	relativer Fehler/Unterschied
$\Delta_{\rm rel}(f)$	frequenzabhängiger relativer Fehler/Unterschied

$\delta_{\rm x},\delta_{\rm y},\delta_{\rm z}$	Winkel zwischen \vec{n} und globaler Koordinatenachse
E	elektrische Feldstärke (Skalar)
\vec{E}	elektrische Feldstärke (vektoriell)
EI	Exposure Index (in dieser Arbeit als "Exposure Wert" bezeichnet)
ε	Permittivität
ε_0	Dielektrizitätskonstante des Vakuums
ε_{r}	relative Permittivität
\vec{e}	Einheitsvektor
F	Fourier-Transformation (Funktionsgleichung)
$F_{\max,\min}$	Faktor zwischen größtem und kleinstem Feldwert
$F_{\rm nop}$	Grundperioden im Zeitintegrationsfenster (engl. Factor Number of Periods)
$F_{\rm os}$	Überabtastungsfaktor (engl. Factor OverSampling)
f	Frequenz
$f_{\rm max}$	maximale Frequenz in einem Spektrum oder Simulationssetup
f_{\min}	minimale Frequenz in einem Spektrum oder Simulationssetup
$f_{\rm sampling}$	Abtastfrequenz
$f_{\rm signal}$	Grundfrequenz Signal
$f_{\rm signal-max}$	maximal vorkommender Frequenzanteil im Signal
$f_{\rm window}$	Fensterfunktion (Rechteck, Flat Top usw.)
Φ	Magnetischer Fluss
Δf	Abstand Frequenzstützstellen
G(f)	gewichtetes Spektrum
g(t)	gewichtetes Zeitsignal
GW(f)	Grenzwerte ICNIRP1998/2010 Empfehlung
Н	magnetische Feldstärke (Skalar)
\vec{H}	magnetische Feldstärke (vektoriell)
H'(f)	Übertragungsfunktion eines Systems
h'(t)	Impulsantwort eines Systems
Ι	elektrische Stromstärke
i,n,m	allgemeine Laufvariable
J	elektrische Stromdichte (Skalar)
\vec{J}	elektrische Stromdichte (vektoriell)
j	Imaginäre Einheit
KLV	Kantenlängenverhältnis zwischen Drahtstruktur und Huygensbox
k	Wellenzahl
k(f)	frequenzabhängiger Umrechnungsfaktor

L	Induktivität
$l_{\rm curve}$	Länge der Evaluierungskurven
l_{draht}	Kantenlänge Drahtstruktur
$l_{\rm huygens}$	Kantenlänge Huygensbox
λ	Wellenlänge
$\lambda_{ m min}$	kleinste Wellenlänge im Simulationsmodell
Δ	Laplace-Operator
M	magnetische Stromdichte (Skalar)
μ	Permeabilität
μ_0	magnetische Feldkonstante des Vakuums
$\mu_{ m r}$	relative Permeabilität
$\mu_{\rm r}(f)$	frequenzabhängige komplexe relative Permeabilität
μ'	Realteil der komplexen Permeabilität
μ''	Imaginärteil der komplexen Permeabilität
N	Anzahl der Abtastpunkte
$N_{\rm coil}$	Anzahl Windungen der Helmholtz Spule
NDIM	Anzahl Gitterzellen pro kürzester Länge
$N_{\rm grid}$	Anzahl Punkte im Punktraster
NLAM	Anzahl Gitterzellen pro kürzester Wellenlänge
$N_{\rm prop}$	Anzahl Propagierungen einer Welle durch Kalkulationsdomäne
$N_{\rm z}$	Anzahl der Gitterpunkte in Z-Richtung
\vec{n}, \hat{n}	Normalvektor
$n_{\rm max}$	maximaler Brechungsindex
n_{\min}	minimaler Brechungsindex
∇	Nabla-Operator
Р	Aufpunkt
P_{noise}	Rauschleistung
$P_{\rm signal}$	Signalleistung
Q	Elektrische Raumladung
$R_{\rm coil}$	Radien der Helmholtz Spulen und Abstand zwischen den Spulen
$R_{\rm L}$	Verlustanteil einer Luftspule
$R_{\rm x}$	Drehmatrix X-Achse
$R_{\rm y}$	Drehmatrix Y-Achse
Rz	Drehmatrix Z-Achse
r	Abstand Zentrum magnetischer Dipol zu Zentrum der Feldsonde
$r_{\rm coil}$	Radius der Spulen der ELT-400

r r'	Ortsvektoren
0	Elektrische Baumladungsdichte
	Dipolmoment
S	Hillfläche
SAR	spezifische Absorptionsrate
σ	elektrische Leitfähigkeit
Twindow	Größe des Zeitintegrationsfensters
t	Zeit
tprop	Zeit bis Welle einmal durch Raumgitter propagiert ist
U	elektrische Spannung
UIND	induzierte Spannung
Unoise	Rauschspannung
$\mathcal{U}(0.1)$	normal verteilter Wahrscheinlichkeitsraum
V	Volumen
v	Ausbreitungsgeschwindigkeit
W(f)	Übertragungsfunktion Gewichtungsfilter
w(t)	Impulsantwort Gewichtungsfilter
ω	Kreisfrequenz
X	Blindwiderstand
X_{approx}	angenäherter Wert
X_{correct}	Referenzwert (wahrer Wert)
$X_{\rm L}$	Induktivitätsanteil einer Luftspule
X'(f)	Eingangsignal im Frequenzbereich
x'(t)	Eingangsignal im Zeitbereich
х	Koordinate in X-Richtung
x	Eingangsgröße einer Funktion (allgemein)
$x_{\rm g}$	geometrisches Mittel
Y'(f)	Ausgangssignal im Frequenzbereich
y'(t)	Ausgangssignal im Zeitbereich
y	Ausgangsgröße einer Funktion (allgemein)
$y_{\text{noise}}(t)$	mit definiertem Rauschen überlagertes Signal
у	Koordinate in Y-Richtung
Ζ	Impedanz
z(t)	Zufallszahlenfolge
Z	Koordinate in Z-Richtung