Modellbildung und Regelung mechatronischer Systeme

Band 11

Ngoc Danh Dang

Advanced Control Designs for Output Tracking of Hydrostatic Transmissions

Berichte aus dem Lehrstuhl für Mechatronik Universität Rostock

Herausgeber: Harald Aschemann

Advanced Control Designs for Output Tracking of Hydrostatic Transmissions

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Maschinenbau und Schiffstechnik an der Universität Rostock

vorgelegt von **M. Sc. Ngoc Danh Dang** geb. am 05.12.1982 in Nghe An, Vietnam

Prof. DrIng. Harald Aschemann
Lehrstuhl für Mechatronik
Universität Rostock

Prof. Dr.-Ing. Paolo Mercorelli Institut für Produkt- und Prozessinnovation Leuphana Universität Lüneburg

Tag der Verteidugung: 19. November 2021

Gutachter:

Lehrstuhl für Mechatronik der Universität Rostock\$2021\$

Berichte aus dem Lehrstuhl für Mechatronik Universität Rostock

Band 11

Ngoc Danh Dang

Advanced Control Designs for Output Tracking of Hydrostatic Transmissions

Shaker Verlag Düren 2022

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Rostock, Univ., Diss., 2021

Copyright Shaker Verlag 2022 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-8399-6 ISSN 2195-9234

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgements

This dissertation is my achievement after a five-year research program at the Chair of Mechatronics at the Faculty of Mechanical Engineering and Marine Technology at the University of Rostock, Germany. This research program was partly sponsored by Vietnam Ministry of Education and Training upon the recommendation of Vietnam National University of Agriculture.

Throughout the research process, I have made a huge effort on my own to reach this final result. However, as we all know, a completed study could not be done without any assistance. For the personal and scientific support I have received, I would like to mention my supervisor, Professor Dr.-Ing. Harald Aschemann – Head of the Chair of Mechatronics. He is serious but friendly, careful but enthusiastic. His dynamism, vision, sincerity and motivation have deeply inspired me. He has provided me a valuable scientific guidance. He has taught me the methods to carry out and to present the research works as clearly as possible. Especially, I am extremely grateful for the invaluable support he has offered me in the hard time of the Covid-19 pandemic that gives me the opportunity to complete the research program. Thereby, I would like to express my deep and sincere gratitude to him.

I would like to thank Prof. Paolo Mercorelli – Leuphana University of Lüneburg – for his interest in my work and the second review.

I also extend my thanks to the secretary staffs, who helped me a lot with the paperwork, and to all other research members in the Chair of Mechatronics for their sincerely and friendly interactions.

Finally, this achievement is dedicated to all members in my great family.

Rostock, November 2021

Ngoc Danh Dang

iv

Abstract

Hydrostatic transmissions, in comparison to conventional mechanical transmission systems, expose many advantages. They provide continuously variable transmission ratios, high power density, low inertia, efficient operation in a wide range of torque-to-speed ratios and they can serve as a dynamic braking system. The spatial arrangement of a hydrostatic transmission is very flexible also, the power can be transmitted from a single prime mover to several load locations, even in the cases where the position and orientation of the load units change. In industrial applications, hydrostatic transmission systems are widely used in specialized working vehicles such as construction, agriculture, excavation machinery and off-road vehicles where high drive torques are required. In other transport vehicles, passenger cars for instance, the applications of hydrostatic transmissions are less common. Recently, in the trend of emission reduction and environment-friendly applications, the hydrostatic transmissions gain more and more contribution in high-performance transport vehicles with the invention of power-split gearboxes, energy recovery systems in hybrid drive trains and also in green energy systems such as ocean energy systems and wind turbines, etc.

The limitation of hydrostatic transmissions in high-performance applications is caused by the energy efficiency and control issues. From a control point of view, they are characterized by high nonlinearity, disturbance and physical parameter uncertainty caused by many operational and structural aspects such as fluid viscosity, temperature variation, leakage oil flow and the elasticity of the connecting hoses, etc. Currently, PID (proportional-integral-derivative) controllers are still predominant in HST applications but their performance, however, is not sufficient to attain an accurate control result in the wide range of HST operation. Therefore, advanced control approaches become more favorable.

In the last decade, many nonlinear control approaches have been proposed, those are diverse in terms of control strategy, control objective and design principle. Based on the existing control techniques that have been proposed generally for uncertain nonlinear systems, the work in this dissertation focuses on the design and the validation of advanced control approaches for the output tracking of HST systems.

Taking the practical considerations as a guideline, the work addresses simple but efficient model descriptions in a combination with advanced control and estimation approaches to achieve an accurate tracking of the desired trajectories. The proposed control designs are capable of fully exploiting the wide operation range of HSTs within the system configuration limits. The dissertation develops a new trajectory planning scheme for the output tracking of HST systems that efficiently and simultaneously uses both the primary and secondary control inputs. Based on this control scheme, simple design models or even purely data-driven models are envisaged and deployed to develop and investigate several advanced control approaches for HST systems: optimal control, estimator-based feedback linearization control, active disturbance rejection control and model-free control approaches. The use of tracking differentiators – which can be interpreted as a model-free way to determine time derivatives of noise-afflicted measurements and substitute classical state transformations corresponding to a classical model-based approach - is investigated in many of the mentioned control structures. Thereby, a practical view on the applicability of such technical measures for effective and robust control designs on HST systems is provided. Successful study results are obtained by means of both simulations and experiments on a real test rig of the hydrostatic transmission – which is built for validation tests at the Chair of Mechatronics, University of Rostock.

Zusammenfassung

Hydrostatische Getriebe bieten im Vergleich zu herkömmlichen mechanischen Getrieben viele Vorteile. Sie ermöglichen stufenlos verstellbare Übersetzungsverhältnisse, eine hohe Leistungsdichte, ein geringes Trägheitsmoment, einen effizienten Betrieb in einem weiten Bereich von Drehmoment-Drehzahl-Verhältnissen, und sie können als dynamisches Bremssystem dienen. Die räumliche Anordnung eines hydrostatischen Getriebes ist ebenfalls sehr flexibel, die Leistung kann von einer einzigen Antriebsmaschine auf mehrere Laststellen übertragen werden, auch wenn sich die Position und Ausrichtung der Lastenheiten ändert. In der Industrie werden die hydrostatische Getriebesysteme häufig in speziellen Arbeitsfahrzeugen wie Bau-, Landwirtschafts-, Bagger- und Geländefahrzeugen eingesetzt, die hohe Antriebsmomente erfordern. In anderen Transportfahrzeugen, z.B. in Personenkraftwagen, ist der Einsatz hydrostatischer Getriebe weniger verbreitet. In jüngster Zeit gewinnen hydrostatische Getriebe im Zuge des Trends zur Emissionsreduzierung für leistungsstarke Transportfahrzeuge und umweltfreundlichen Anwendungen mit der Entwicklung von leistungsverzweigten Getrieben, Energierückgewinnungssystemen in Hybridantriebssträngen und auch in umweltfreundlichen Energiesystemen wie Meeresenergiesystemen und Windturbinen immer mehr an Bedeutung.

Die Grenzen des hydrostatischen Getriebes in Hochleistungsanwendungen liegen in der Energieeffizienz und der Regelung. Aus regelungstechnischer Sicht sind sie durch hohe Nichtlinearität, Störungen und Unsicherheiten der physikalischen Parameter gekennzeichnet, die durch zahlreiche betriebliche und strukturelle Aspekte wie Flüssigkeitsviskosität, Temperaturschwankungen, Leckölströme und Elastizitäten der Verbindungsschläuche usw. verursacht werden. Gegenwärtig sind PID-Regler (proportional-integral-differenzierend) in HST-Anwendungen immer noch vorherrschend, aber ihr Leistungsvermögen reicht nicht aus, um in dem weiten Bereich des HST-Betriebs ein genaues Regelungsverhalten zu erzielen. Daher werden fortschrittliche Regelungsansätze immer bedeutender.

Im letzten Jahrzehnt wurden viele nichtlineare Regelungsansätze vorgeschlagen, die sich in Bezug auf Regelungsstrategie, Regelungsziel und Entwurfsprinzip unterscheiden. Basierend auf den bestehenden Entwurfstechniken, die im Allg. für unsichere nichtlineare Systeme vorgeschlagen wurden, konzentriert sich diese Dissertation auf den Entwurf und die Validierung von fortgeschrittenen Regelungsansätzen für die Ausgangsfolgeregelung von HST-Systemen.

Unter Berücksichtigung praktischer Erwägungen werden in dieser Arbeit einfache, aber effiziente Modellbeschreibungen in Kombination mit fortschrittlichen Regelungs- und Schätzmethoden verwendet, um eine genaue Verfolgung der gewünschten Trajektorien zu erreichen. Die vorgeschlagenen Regelungskonzepte sind in der Lage, den weiten Betriebsbereich von HSTs innerhalb der Grenzen der Systemkonfiguration voll auszunutzen. In der Dissertation wird ein neues Schema für die Trajektorienplanung für die Ausgangsfolge von HST-Systemen entwickelt, das sowohl die primären als auch die sekundären Steuereingänge effizient und gleichzeitig nutzt. Auf der Grundlage dieses Strukturierung werden einfache Entwurfsmodelle oder sogar rein datengetriebene Modelle in Betracht gezogen und eingesetzt, um mehrere fortschrittliche Regelungsansätze für HST-Systeme zu entwickeln und zu untersuchen: optimale Regelung, schätzungsbasierte Linearisierungsverfahren im Rückführzweig, aktive Störungsunterdrückung und modellfreie Regelungsansätze. Die Verwendung von Tracking-Differenzierern – die als modellfreier Weg zur Bestimmung von Zeitableitungen störungsbehafteter Messungen interpretiert werden können und klassische Zustandstransformationen, die einem klassischen modellbasierten Ansatz entsprechen, ersetzen - wird in vielen der genannten Regelungsstrukturen untersucht. Dadurch wird ein praktischer Blick auf die Anwendbarkeit solcher technischer Maßnahmen für

effektive und robuste Regelungsentwürfe auf HST-Systemen ermöglicht. Erfolgreiche Untersuchungsergebnisse werden sowohl mittels Simulationen als auch durch Experimente an einem realen Prüfstand des hydrostatischen Getriebes – der für Validierungstests am Lehrstuhl für Mechatronik der Universität Rostock aufgebaut ist – erzielt.

Contents

Lis	t of	Figures	iii
Lis	st of	Tables	vii
Ab	brev	ations	ix
Lis	st of	Symbols	xi
1	Intro	oduction	1
	1.1	Principle of Hydrostatic Transmissions	1
	1.2	HST System Configurations	1
	1.3	Applications of HST Systems	4
	1.4	Disadvantages of HSTs	7
	1.5	HST Control Literature Review	8
		1.5.1 Classical Proportional-Integral-Derivative (PID) Control	8
		1.5.2 Fuzzy Logic Control	9
		1.5.3 Model-Based Control	10
		1.5.4 Modeling and Trajectory Planning	13
	1.6	Summary	16
	1.7	Contribution and Outline	16
2	Мос	leling and Trajectory Planning for the HST System	19
	2.1	Mathematical Model of the HST	19
		2.1.1 Hydraulic System Dynamics	20
		2.1.2 Actuator Dynamics	21
		2.1.3 Mechanical System Dynamics	21
		2.1.4 The Nonlinear Model of the Overall System	22
	2.2	Motivation of the Trajectory Planning Method	22
	2.3	Synchronized Trajectory Planning for the Bent-Axis Angles of the Hydraulic	
		Motors	23
3	Adv	anced Output Control Designs	25
	3.1	Optimization-Based Approaches	26
		3.1.1 Model Predictive Control (MPC)	27
		3.1.2 Takagi-Sugeno Fuzzy-Based Optimal Control Design for Torque Tracking	
		(FBO)	34
		3.1.3 State-Dependent Integral State Feedback for Torque Control (SIF)	41
	3.2	Estimator-Based Feedback Linearization	47
		3.2.1 Nonlinearity Compensation Using a State and Disturbance Observer	52
		3.2.2 Nonlinearity Compensation by Adaptive Parameter Estimation	55
		3.2.3 Nonlinearity Compensation by a Neural Network	57

	3.3	Active	Disturbance Rejection Approaches	60
		3.3.1	Observer-Based ADR Control Design	60
		3.3.2	Flat-Filtering ADR Control Design	62
	3.4	Model	-Free Approaches	66
		3.4.1	Sliding Mode Control	67
		3.4.2	Neural Network Compensation Using Feedback Error Learning	70
		3.4.3	Adaptive Feedforward Compensation Using Neural Networks	73
4	Con	trol De	sign Validation	77
	4.1	Synch	conization of the Displacement Units	77
	4.2	Contro	Performance	78
		4.2.1	Optimization-Based Approaches	79
		4.2.2	Estimator-Based Feedback Linearization	88
		4.2.3	Active Disturbance Rejection Controls	96
		4.2.4	Model-Free Approaches	99
5	Con	clusion	s	107
Bi	bliog	raphy		109

List of Figures

1.1	Open-circuit HST systems
1.2	Closed-circuit HST systems
1.3	Possible types of an HST system.
1.4	Structural principle of a swash-plate type pump/motor (adapted from [1])
1.5	Structural principle of a bent-axis type pump/motor (adapted from [1])
1.6	A servo mechanism for tilt angle control [13]
1.7	A bucket lift: the drive engine is mounted on a rotary platform, hydraulic motors
	are placed at the wheels [1].
1.8	Power-split gearboxes [14].
1.9	Serial connection of an HST with a gearbox [14]
1.10	Serial hydraulic hybrid transmission systems [1]
1.11	HSTs in wind power plants [9].
2.1	The HST test equipment [73].
2.2	Principle configuration of the test rig
2.3	Structural principle of the hydraulic pump [73]
2.4	Structural principle of the hydraulic motor [73]
2.5	Operational characteristics of the HST
2.6	Variation of the motor angular velocity upon the motor and pump displacements
	at a constant pump velocity
3.1	Classification of the control designs
3.2	Principle of model predictive control
3.3	Illustration example of the convex optimization process using the idea of optimizing-
	over-some-variables for a two-dimensional case
3.4	Implementation of the NMPC structure
3.5	respectively and the second seco
	The control structure of the TS fuzzy-based LQR design
3.6	The control structure of the TS fuzzy-based LQR design
$3.6 \\ 3.7$	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 42 The block diagram of the implemented control structure. 46
3.6 3.7 3.8	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 43 The block diagram of the implemented control structure. 46 Experimental results for signal derivative estimation. 51
3.6 3.7 3.8 3.9	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 43 The block diagram of the implemented control structure. 40 Experimental results for signal derivative estimation. 51 Proposed feedback linearization scheme. 52
3.6 3.7 3.8 3.9 3.10	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 43 The block diagram of the implemented control structure. 40 Experimental results for signal derivative estimation. 51 Proposed feedback linearization scheme. 52 Feedback linearization implementation with the RDO. 55
3.6 3.7 3.8 3.9 3.10 3.11	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 42 The block diagram of the implemented control structure. 46 Experimental results for signal derivative estimation. 51 Proposed feedback linearization scheme. 52 Feedback linearization implementation with the RDO. 53 Feedback linearization implementation with APE. 55
3.6 3.7 3.8 3.9 3.10 3.11 3.12	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 42 The block diagram of the implemented control structure. 40 Experimental results for signal derivative estimation. 51 Proposed feedback linearization scheme. 52 Feedback linearization implementation with the RDO. 53 Feedback linearization implementation with APE. 57 The MLP network structure. 58
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 42 The block diagram of the implemented control structure. 40 Experimental results for signal derivative estimation. 51 Proposed feedback linearization scheme. 52 Feedback linearization implementation with the RDO. 53 Feedback linearization implementation with APE. 56 Feedback linearization with MLP networks. 60
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	The control structure of the TS fuzzy-based LQR design. 40 The block diagram of the feedback control (presented in continuous form). 42 The block diagram of the implemented control structure. 40 Experimental results for signal derivative estimation. 50 Proposed feedback linearization scheme. 52 Feedback linearization implementation with the RDO. 55 Feedback linearization implementation with APE. 56 Feedback linearization with MLP networks. 56 Feedback linearization with MLP networks. 66 Implementation of the ESO-based ADR control. 63
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	The control structure of the TS fuzzy-based LQR design.40The block diagram of the feedback control (presented in continuous form).42The block diagram of the implemented control structure.40Experimental results for signal derivative estimation.51Proposed feedback linearization scheme.52Feedback linearization implementation with the RDO.55Feedback linearization implementation with APE.56Feedback linearization with MLP networks.56Feedback linearization with MLP networks.66Implementation of the ESO-based ADR control.66The closed-loop error dynamics of HST systems.64
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	The control structure of the TS fuzzy-based LQR design.40The block diagram of the feedback control (presented in continuous form).42The block diagram of the implemented control structure.40Experimental results for signal derivative estimation.51Proposed feedback linearization scheme.52Feedback linearization implementation with the RDO.55Feedback linearization implementation with APE.56Feedback linearization with MLP networks.60Implementation of the ESO-based ADR control.63The closed-loop error dynamics of HST systems.64Signal reconstructions by multiple integration.64
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17	The control structure of the TS fuzzy-based LQR design.40The block diagram of the feedback control (presented in continuous form).42The block diagram of the implemented control structure.40Experimental results for signal derivative estimation.51Proposed feedback linearization scheme.52Feedback linearization implementation with the RDO.55Feedback linearization implementation with APE.56Feedback linearization with MLP networks.60Implementation of the ESO-based ADR control.63The closed-loop error dynamics of HST systems.64Signal reconstructions by multiple integration.64The compensation network.64
3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	The control structure of the TS fuzzy-based LQR design.40The block diagram of the feedback control (presented in continuous form).43The block diagram of the implemented control structure.40Experimental results for signal derivative estimation.51Proposed feedback linearization scheme.52Feedback linearization implementation with the RDO.55Feedback linearization implementation with APE.55Feedback linearization with MLP networks.56Feedback linearization with MLP networks.60Implementation of the ESO-based ADR control.64Signal reconstructions by multiple integration.64Flat-fitering-based control for HST systems.66

3.20	Principle of feedback error learning.	70
3.21	The implemented MLP network.	72
3.22	The model-free approach using feedback error learning.	73
3.23	The neural network structure.	75
3.24	The model-free approach with AFC using neural network.	76
4.1	Synchronization of displacement units with the full range trajectory	77
4.2	Synchronization of displacement units with the small range trajectory	78
4.3	Synchronization of displacement units with the medium range trajectory	78
4.4	The desired angular velocity for testing.	78
4.5	Variation of prime mover angular velocity.	79
4.6	Variation of external disturbance load torques.	79
4.7	Disturbance estimation performance of the Kalman filter	80
4.8	Simulation velocity tracking result of NMPC in the first test case	80
4.9	Numerical evaluation of the NMPC stability criterion	80
4.10	Variation of displacement units in simulation of the NMPC.	81
4.11	Simulation velocity tracking result of NMPC in the second test case	81
4.12	Experimental velocity tracking result of NMPC in the first test case	81
4.13	Variation of displacement units of the NMPC on the test rig	82
4.14	Experimental velocity tracking result of NMPC in the second test case	82
4.15	Simulation torque tracking result of NMPC in the first test case	82
4.16	Simulation torque tracking result of NMPC in the second test case	83
4.17	Experimental torque tracking result of NMPC in the first test case	83
4.18	Experimental torque tracking result of NMPC in the second test case	83
4.19	Simulation torque tracking result of FBO control in the first test scenario. \ldots	84
4.20	Simulation torque tracking result of FBO control in the second test scenario	84
4.21	Experimental torque tracking result of FBO control in the first test case. \ldots	84
4.22	Variation of motor angular velocity and displacement units for FBO control	85
4.23	Experimental torque tracking result of FBO control in the second test case	85
4.24	Disturbance estimations of the state-dependent observer	85
4.25	Simulation torque tracking result of SIF control in the first test case	86
4.26	Simulation torque tracking result of SIF control in the second test case	86
4.27	Experimental torque tracking result of SIF control in the first test case	86
4.28	Experimental torque tracking result of SIF control in the second test case	86
4.29	Performance of the simple linear feedback controller.	88
4.30	Estimation of disturbance q_U and the bent-axis angle $\tilde{\alpha}_M$ by the RDO	89
4.31	Simulation velocity tracking result using the RDO in the first test case	89
4.32	Simulation velocity tracking result using the RDO in the second test case	89
4.33	Experimental velocity tracking result using the RDO in the first test case	90
4.34	Experimental velocity tracking result using the RDO in the second test case. $\ . \ .$	90
4.35	Analog control signal of the hydraulic pump	90
4.36	Smooth motion of the pump swash plate	90
4.37	Simulation velocity tracking result using APE in the first test case	91
4.38	Variation of adaptive parameters.	91
4.39	Simulation velocity tracking result using APE in the second test case	92
4.40	Experimental velocity tracking result using APE in the first test case	92
4.41	Experimental velocity tracking result using APE in the second test case	92
4.42	Simulation velocity tracking result using MLP networks in the first test case	93
4.43	Variation of the MLP network weights	93

4.44	Simulation velocity tracking result using MLP networks in the second test case.	94
4.45	Experiment velocity tracking result using MLP networks in the first test case.	94
4.46	Experiment velocity tracking result using MLP networks in the second test case.	94
4.47	Simulation velocity tracking result of ESO-based ADR control in the first test	
	case	96
4.48	Simulation velocity tracking result of ESO-based ADR control in second test case.	96
4.49	Experimental velocity tracking result of ESO-based ADR control in the first test	
	case	97
4.50	Experimental velocity tracking result of ESO-based ADR control in the second	
	test case	97
4.51	Simulation velocity tracking result of flat-filtering-based ADR control in the first	
	test case	98
4.52	Simulation velocity tracking result of flat-filtering-based ADR control in the sec-	
	ond test case	98
4.53	Experimental velocity tracking result of flat-filtering-based ADR control in the	
	first test case	98
4.54	Experimental velocity tracking result of flat-filtering-based ADR control in the	
	second test case.	99
4.55	Simulation velocity tracking result of SMC in the first test case	00
4.56	Analog control signals using SMC	00
4.57	Simulation velocity tracking result of SMC in the second test case	01
4.58	Experimental velocity tracking result of SMC in the first test case	01
4.59	Experimental velocity tracking result of SMC in the first test case	01
4.60	Simulation velocity tracking result using FEL in the first test case	02
4.61	The network weight adaptation using FEL	02
4.62	Simulation velocity tracking result using FEL in the second test case 1	02
4.63	Experimental velocity tracking result using FEL in the first test case 1	03
4.64	Experimental velocity tracking result using FEL in the second test case 1	03
4.65	Simulation velocity tracking result using AFC in the first test case 1	03
4.66	Adaptation of network weights in AFC control	04
4.67	Simulation velocity tracking using AFC in the second test case	04
4.68	Experimental velocity tracking result using AFC in the first test case 1	04
4.69	Experimental velocity tracking result using AFC in the second test case 1	04

List of Tables

3.1	Performance of discretization methods	28
4.1	RMS error evaluation for velocity control of the nonlinear MPC	87
4.2	Comparison of simulation RMS error for optimization-based control designs	87
4.3	Comparison of experimental RMS error for optimization-based control designs .	87
4.4	Simulation RMS errors of feedback linearization control with alternative com-	
	pensation approaches	95
4.5	Experimental RMS errors of feedback linearization control with alternative com-	
	pensation approaches	95
4.6	Comparison of simulation RMS error for ADR controllers	99
4.7	Comparison of experimental RMS error for ADR controllers	99
4.8	Comparison of simulation RMS error for control designs in model-free framework	105
4.9	Comparison of experimental RMS error for control designs in model-free framework	105

Abbreviations

ADR	Active disturbance rejection
AFC	Adaptive feedforward compensation
APE	Adaptive parameter estimation
CMAC	Cerebellar model articulation controller
DARE	Discrete algebraic Riccati equation
DLQR	Discrete linear quadratic regulator
ESO	Extended state observer
FBO	Takagi-Sugeno Fuzzy-based optimal control
FEL	Feedback error learning
Fig.	Figure
GPI	Generalized-proportional-integral
HJB	Hamilton-Jacobi-Bellman
HST	Hydrostatic transmission
iPD	Intelligent proportional-derivative control
LQR	Linear quadratic regulator
LTD	Linear tracking differentiator
LTD2	Second-order linear tracking differentiator
LTD3	Third-order linear tracking differentiator
LTD4	Fourth-order linear tracking differentiator
LMI	Linear matrix inequality
MIMO	Multiple input-multiple output
MISO	Multiple input-single output
MLP	Multiple layer perceptron network
MPC	Model predictive control
NMPC	Nonlinear model predictive control
Р	Proportional control
PD	Proportional-derivative control
PI	Proportional-integral control
PID	Proportional-integral-derivative control
RDO	Reduced-order state and disturbance observer
RBF	Radial basic function
RMS	Root mean square
SDRE	State-dependent Riccati equation
SIF	State-dependent integral feedback control
SISO	Single input-single output
SMC	Sliding mode control
Tab.	Table
TD	Tracking differentiator
UKF	Unscented Kalman filter
w.r.t.	with respect to

List of Symbols

The list is split into parts according to the structure of the content. Note that supplementary, intermediate, and auxiliary variables are not explicitly listed, but specified at the place of their first usage.

Modeling and Trajectory Planning for the HST System

Mathematical Model of the HST system

q_P	Hydraulic pump flow rate
q_M	Hydraulic motor flow rate
ω_P	Hydraulic pump angular velocity
ω_M	Hydraulic motor angular velocity
V_P	Volumetric displacement of hydraulic pump
V_M	Volumetric displacement of hydraulic motor
\tilde{V}_P	Maximal volumetric displacement of hydraulic pump
\tilde{V}_M	Maximal volumetric displacement of hydraulic motor
α_P	Swash-plate angle of hydraulic pump
$\alpha_{P,max}$	Maximal swash-plate angle of hydraulic pump
$\tilde{\alpha}_P$	Normalized swash-plate angle of hydraulic pump
α_M	Bent-axis angle of hydraulic motor
$\alpha_{M,max}$	Maximal bent-axis angle of hydraulic motor
$\tilde{\alpha}_M$	Normalized bent-axis angle of hydraulic motor
ϵ_M	Lower bound of hydraulic motor bent-axis angle
A_P	Effective piston area of hydraulic pump
D_P	Piston circle diameter of hydraulic pump
N_P	Number of piston in hydraulic pump displacement unit
A_M	Effective piston area of hydraulic motor
D_M	Piston circle diameter of hydraulic motor
N_M	Number of piston in hydraulic motor displacement unit
Δp	Difference pressure in the hydraulic circuit
q_U	Lumped leakage flow disturbance
$ au_U$	Lumped torque disturbance
T_{uP}	Time constant of hydraulic pump actuator
T_{uM}	Time constant of hydraulic motor actuator
k_P	Proportional gain of hydraulic pump actuator
k_M	Proportional gain of hydraulic motor actuator
u_P	Analog control signal of hydraulic pump
u_M	Analog control signal of hydraulic motor
J_V	Mass moment of inertial at hydraulic motor shaft

- d_V Damping coefficient at hydraulic motor shaft
- $\tilde{\alpha}_{Md}$ Desired trajectory of motor bent-axis angle
- ω_{Md} Desired trajectory of motor angular velocity
- $\omega_{Md,max}$ $\,$ Maximal desired value of motor angular velocity $\,$
 - ω_{max} Physically-limited value of motor angular velocity
 - a User-defined threshold for motor displacement activation
 - b Limit parameter for desired trajectory design

Advanced Output Control Designs

Optimization-Based Approaches

Model Predictive Control

- N Number of point in prediction horizon
- J Cost function
- w_j Weighting scalars, $j = \{1, 2, 3, 4\}$
- \tilde{k} Time index
- p Design parameter
- \mathbf{x} Full system state vector
- $\bar{\Upsilon}$ Lyapunov function candidate
- ${\bf f} \quad {\rm System \ dynamics \ vector \ function}$
- \mathbf{C}_m Output matrix
- \mathbf{x}_e Extended system state vector
- Ψ Extended system dynamics vector function
- α, κ, β Design parameters
 - $\hat{\mathbf{x}}_e$ Estimate of extended system state vector
 - \mathbf{Q}_{K} Process noise covariance matrix
 - \mathbf{R}_{K} Measurement noise covariance matrix
 - \mathbf{K}_{K} Kalman gain matrix
 - \mathbf{L}_x State covariance matrix
 - $\tilde{\mathbf{L}}_x$ Error covariance matrix
 - $\tilde{\mathbf{L}}_{y}$ Measurement error covariance matrix
 - L_{xy} Cross-covariance matrix
 - τ_h Motor hydraulic torque
 - τ_{hd} Desired value of hydraulic torque

Takagi-Sugeno Fuzzy-Based Optimal Control Design for Torque Tracking Control

 $y_{\tau} = \tau_h$ Output torque

- \mathbf{x}_{τ} Torque-controlled system state vector
- v Lump disturbance input
- A Quasi-linear system matrix
- **b** Input matrix
- d Disturbance input matrix
- c Output matrix

$\mathbf{A}_{d,1}, \mathbf{A}_{d,2}$	Discretized vertex system matrices
\mathbf{b}_d	Discretized input matrix
\mathbf{d}_d	Discretized disturbance input matrix
\mathbf{K}_{C}	Kalman controllability criterion matrix
$\mathbf{A}_1, \mathbf{A}_2$	Vertex system matrices
h_1, h_2	Weighting functions
$\mathbf{S}_1, \mathbf{S}_2$	DARE solutions matrices
$\mathbf{A}_{c,1}, \mathbf{A}_{c,2}$	Vertex closed-loop system matrices
\mathbf{A}_{c}	Closed-loop system matrix
$\mathbf{k}_1, \mathbf{k}_2$	Vertex optimal feedback gain vectors
k	Optimal feedback gain vector
\mathbf{P}_L	Common Lyapunov function
J_{τ}	Quadratic cost function
\mathbf{Q}	State weighting matrix
r	Control input weighting scalar
T_s	Sampling time
$k_{F,0}, k_{F,1}, k_{F,2}$	Feedforward gains
$k_{D,0}, k_{D,1}$	Disturbance compensation gains
z	z-transform variable
$y_{\tau,d} = \tau_{hd}$	Desired value of output torque
a_M	System matrix of motor dynamics
b_M	Input vector of motor dynamics system
a_{dM}	Discretized system matrix of motor dynamics
b_{dM}	Discretized input vector of motor dynamics system
k_M	Optimal feedback gain of motor control
b_M	Input vector of motor dynamics system
$k_{MF,0}, k_{MF,1}$	Feedforward gains of motor control

State-Dependent Integral State Feedback Control

- $\bar{\mathbf{x}}$ Augmented state vector
- $\bar{\mathbf{A}}$ Augmented system matrix
- $\bar{\mathbf{b}}$ Augmented input matrix
- $\bar{\mathbf{e}}$ Reference input matrix
- $\bar{\mathbf{c}}$ Augmented output matrix
- w_{τ} Integral state
- $\bar{\mathbf{K}}_{C}$ Kalman controllability matrix
- $\bar{\mathbf{A}}_d$ Discretized augmented system matrix
- $\bar{\mathbf{b}}_d$ Discretized augmented input matrix
- $\bar{\mathbf{k}}$ –State-dependent feedback gain vector
- $\bar{\mathbf{Q}}$ Weighting matrix of augmented state vector
- \bar{r} –Weighting scalar of feedback control input
- u_{SFB} Feedback control input
 - \bar{J}_{τ} Quadratic cost function
 - $\mathbf{\bar{S}}$ SDRE solution matrix
 - $\bar{\mathbf{A}}_c$ Close loop system matrix
- $\bar{\mathbf{A}}_{d,i}$ Vertex discretized system matrices, $i = \{1, 2, 3, 4\}$

- $\bar{\mathbf{A}}_{c,i}$ Vertex close loop system matrices, $i = \{1, 2, 3, 4\}$
- $\mathbf{\bar{k}}_i$ Vertex system feedback gain vectors, $i = \{1, 2, 3, 4\}$
- $\bar{\mathbf{P}}_L$ Common Lyapunov function matrix
- $\tilde{\mathbf{A}}_c$ State feedback close loop system matrix

 $k_{V,0}, k_{V,1}$ State-dependent disturbance compensation gains

 u_{SDC} Disturbance compensation control input

- J_e $\,$ Quadratic cost function for observer design
- \mathbf{K}_{e} Kalman observability criterion matrix
- \mathbf{Q}_{e} Weighting matrix of estimation error
- \mathbf{R}_{e} Weighting matrix of measurement error
- \mathbf{A}_{ed} Discretized extended system matrix
- \mathbf{B}_{ed} Discretized extended system matrix
- \mathbf{S}_{e} SDRE solution for observer design
- \mathbf{H}_{e} State-dependent observer gain matrix
- $\mathbf{H}_{e,i}$ Vertex observer gain matrix, $i=\{1,...,8\}$
- $\mathbf{O}_{e,i}$ Vertex observer system matrix, $i = \{1, ..., 8\}$
- \mathbf{P}_e Common Lyapunov function matrix

Estimator-Based Feedback Linearization

- ς_i State variables of tracking differentiator i = 1, 2, ..., n
- $c_{\text{sn},i}$ Tracking differentiator coefficients i = 1, 2, ... n
- $R_{\varsigma n}$ Tuning parameter for tracking differentiator
 - r_x Tracked signal
 - y System state vector
 - V Lyapunov function candidate
- λ_0, λ_1, k Feedback-linearized control parameters
 - e Tracking error
 - f Nonlinearity function
 - $c_{\varsigma 3,i}$ LTD3 coefficients ,i = 1, 2, 3
 - $R_{\varsigma 3}$ Tuning parameter for LTD3

Nonlinearity Compensation Using a State and Disturbance Observer

- **q** Estimated state vector of RDO
- ${\bf p}$ Internal state vector of RDO
- ${\bf H} \quad {\rm Observer \ gain \ matrix \ of \ RDO}$
- $\mathbf{y}_m \quad \text{Measurement vector}$
 - ${\bf u} \quad {\rm Control\ input\ vector}$
 - ξ Estimation error vector of RDO
 - $\Phi \quad \text{Nonlinear function of RDO}$
- \mathbf{J}_{ξ} Jacobian matrix of estimation error dynamics of RDO
- $\mathbf{f}_1, \mathbf{f}_2$ System dynamics vector functions
 - I Identity matrix
- $k_{\alpha M}$ Feedback gain of hydraulic motor control

Nonlinearity Compensation by Adaptive Parameter Estimation

- s Laplace domain variable
- \bar{f} Alternative presentation of nonlinearity function in adaptive control
- \bar{k} Adaptive control design parameter
- \hat{a}_1 Adaptive parameters, $i = \{0, 1, 2, 3, 4\}$
- γ_i Adaptation rate for parameter estimation, $i = \{0, 1, 2, 3, 4\}$

 $y_d = \omega_{Md}$ Desired value of angular velocity

Nonlinearity Compensation by a Neural Network

- F_N Output function of neural network
 - \tilde{k} Feedback control design parameter
 - \tilde{f} Alternative presentation of nonlinearity function in neural feedback control
- w Neural network output weight vector
- V Neural network hidden-layer weight matrix
- σ Neural network activation function
- $M_w, \mathbf{M}_v, \kappa, \kappa_r$ Neural network tuning parameter
 - Θ Augmented weighting matrix of neural network
 - θ Bound of augmented weighting matrix norm
 - Q $\,$ Norm bound of desired trajectory $\,$
 - u_{δ} Robust term of neural network control
 - \mathbf{x}_N Neural network synapsis input vector

Active Disturbance Rejection Approaches

Observer-Based ADR Control Design

- ζ Estimation errors of ESO
- \hat{y} –System states estimated by ESO

 χ_1, χ_2 Extended states of ESO

- \tilde{F} Total disturbance in ADR control
- l_i Gains of ESO, $i = \{0, 1, 2, 3, 4\}$
- α_i Feedback gains of ADR control, $i = \{0, 1, 2\}$
- t, τ Time variable
- P_0 Characteristic polynomial of ESO
- ${\cal P}_e$ $\,$ Characteristic polynomial of linear feedback controller

Flat-Filtering ADR Control Design

- e_{uP} Control input error
- β_i Flat-filtering network gains, $i = \{0, 1, 2, 3, 4, 5\}$
- P_{β} Characteristic polynomial

Model-Free approaches

- y Output of phenomenological model
- u Input of phenomenological model
- F Piece-wise constant function of disturbance in ultra-local model
- K User-defined system parameter

Sliding Mode Control

- \hat{F} Estimate of disturbance in ultra-local model
- $\tilde{\xi}$ Disturbance estimation error
- \vec{L} Disturbance estimation error bound
- ϑ Sliding variable

 ρ_0, ρ_1, ρ_2 Sliding manifold design parameters

- $\bar{\eta},\bar{\rho},\bar{\gamma}$ Sliding control design parameters
 - \bar{V} Lyapunov function candidate
 - $R_{\varsigma 4}$ LTD4 parameter
 - $c_{\varsigma 4,i}$ LTD4 parameters, $i = \{1, 2, 3, 4\}$

Neural Network Compensation Using Feedback Error Learning

- k_0, k_1, k_2 Feedback control gains
 - $R_{\varsigma 3}$ LTD3 parameter
 - $c_{\varsigma 3,i}$ LTD3 parameters, $i = \{1, 2, 3\}$
 - W Weight matrix of neural network
 - w Output layer weight vector of neural network
 - V Hidden layer weight matrix of neural network
 - \mathbf{x}_N Synaptic input vector
 - *P* Number of neurons
- η, η_w, η_v Learning rates

Adaptive Feedforward Compensation Using Neural Networks

- L Number of neurons
- v_i Input weights, $i = \{1, ..., L\}$
- w_i Output weights, $i = \{1, ..., L\}$
- η_1, η_2 Learning rates
- k_P, k_D, k_{2D} Feedback control gains