

Forschungsberichte aus dem **wbk** Institut für Produktionstechnik Karlsruher Institut für Technologie (KIT)

Constantin Hofmann

Vorausschauende und reaktive Mehrzieloptimierung für die Produktionssteuerung einer Matrixproduktion

Forschungsberichte aus dem wbk Institut für Produktionstechnik Karlsruher Institut für Technologie (KIT)

Hrsg.: Prof. Dr.-Ing. Jürgen Fleischer Prof. Dr.-Ing. Gisela Lanza Prof. Dr.-Ing. habil. Volker Schulze

Constantin Carl Hofmann

Vorausschauende und reaktive Mehrzieloptimierung für die Produktionssteuerung einer Matrixproduktion

Band 250

Vorausschauende und reaktive Mehrzieloptimierung für die Produktionssteuerung einer Matrixproduktion

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des Karlsruher Institut für Technologie (KIT)

angenommene

DISSERTATION

von

Constantin Carl Hofmann
aus Frankfurt am Main

Tag der mündlichen Prüfung: 07.10.2021

Hauptreferentin: Prof. Dr.-Ing. Gisela Lanza

Korreferent: Prof. Dr. techn. Christian Ramsauer

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2021

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8316-3 ISSN 0724-4967

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort der Herausgeber

Die schnelle und effiziente Umsetzung innovativer Technologien wird vor dem Hintergrund der Globalisierung der Wirtschaft der entscheidende Wirtschaftsfaktor für produzierende Unternehmen. Universitäten können als "Wertschöpfungspartner" einen wesentlichen Beitrag zur Wettbewerbsfähigkeit der Industrie leisten, indem sie wissenschaftliche Grundlagen sowie neue Methoden und Technologien erarbeiten und aktiv den Umsetzungsprozess in die praktische Anwendung unterstützen.

Vor diesem Hintergrund wird im Rahmen dieser Schriftenreihe über aktuelle Forschungsergebnisse des Instituts für Produktionstechnik (wbk) am Karlsruher Institut für Technologie (KIT) berichtet. Unsere Forschungsarbeiten beschäftigen sich sowohl mit der Leistungssteigerung von additiven und subtraktiven Fertigungsverfahren, den Produktionsanlagen und der Prozessautomatisierung sowie mit der ganzheitlichen Betrachtung und Optimierung der Produktionssysteme und -netzwerke. Hierbei werden jeweils technologische wie auch organisatorische Aspekte betrachtet.

Prof. Dr.-Ing. Jürgen Fleischer

Prof. Dr.-Ing. Gisela Lanza

Prof. Dr.-Ing. habil. Volker Schulze

Vorwort des Verfassers

Diese Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT).

Ich möchte mich besonders bei Prof. Dr.-Ing. Gisela Lanza für die Betreuung und Begleitung dieser Arbeit in den letzten Jahren bedanken. Mein Dank gilt insbesondere auch für ihr entgegengebrachtes Vertrauen und den großen Freiraum, den ich in dieser Zeit am Institut genießen durfte. Die familiäre, inspirierende und durch persönliches Engagement geprägte Atmosphäre des wbks habe ich sehr geschätzt. Mein herzliches Dankeschön gilt Prof. Dr. techn. Christian Ramsauer für die Übernahme des Korreferats. Der Projektgruppe der SAP möchte ich für den Rahmen und die wertvollen Diskussionen danken, die zum Gelingen dieser Arbeit beigetragen haben.

Bei allen Kolleginnen und Kollegen am wbk möchte ich mich für den außergewöhnlichen Zusammenhalt und das freundschaftliche Arbeitsumfeld ganz herzlich bedanken. Insbesondere möchte ich Tom Stähr, Andreas Kuhnle, Dietrich Berger, Robin Kopf, Bastian Verhaelen, Niclas Eschner, Daniel Gauder, Raphael Wagner, Sina Peukert und Carmen Krahe nennen. Besonderen Respekt zolle ich den Studierenden, die durch ihr Engagement, ihren Erfindungsgeist und ihr Durchhaltevermögen diese Arbeit geprägt haben.

Abschließend möchte ich mich bei meinem Bruder Valentin, meinen Eltern, Großeltern und vor allem bei meiner Freundin Priscilla für den Rückhalt und die tatkräftige Unterstützung bedanken.

Karlsruhe, 23. Juli 2021

Constantin Carl Hofmann

Abstract

An increasingly diverse production program with uncertain quantities makes it difficult to operate production systems economically. If product individualization causes different processing times at the production stations, takt time losses occur. Fluctuations in the proportions of product variants can also lead to dynamic bottlenecks. The concept of matrix production pursues a flexibilization of the production structure by dissolving the rigid linkage, the takt time dependency and by using redundant multi-purpose stations. These measures allow production control to vary the sequence of operations within the limits of the precedence graph and to adjust the route of each job. Reactive multi-objective control is needed to take advantage of these degrees of freedom and to meet the varying objectives of production systems. By using domain knowledge in the optimization, efficiency can be increased for the specific problem. However, due to the diversity of production systems and target variables, production control should be able to adapt autonomously to the use case at hand. As the durations for cycle, transport and setup times are important input variables for scheduling, a method to determine realistic values is needed.

Due to the complexity of the control decision, heuristics are most suitable. In particular, Monte Carlo Tree Search, as an iterative search tree method, has good properties for use as a reactive production control. However, so far, approaches to meet the requirements of controlling a matrix production have been lacking.

In this thesis, a reactive multi-objective control based on MO-MCTS is developed for the production control of a matrix production considering setup and transport operations. In addition, a post optimization based on local search is integrated into the MO-MCTS flow. In order to quickly achieve high solution quality for different objectives and production systems, two methods are developed to autonomously adapt the production control. To ensure the accuracy of the durations used in scheduling, a method to derive and update the underlying distributions is presented. The detailed evaluations based on different use cases show that the production control is able to successfully optimize different objectives. The methods for autonomous adaptation also lead to a faster increase in solution quality. The comparison to optimal reference solutions and to benchmark problems from literature also prove the high solution quality. The application to a real-world scheduling scenario demonstrates the behavior of the production control regarding breakdowns and deviations. This work presents a comprehensive analysis of the production control with a thorough analysis of the influence factors on the attainability of objectives and the increase of solution quality.

Inhaltsverzeichnis I

Inhaltsverzeichnis

ln	halts	verzeio	chnis	
ΑI	bkürz	ungsv	erzeichnis	٧
۷a	ariabl	enverz	eichnis	VII
1	Einl	eitung		1
	1.1	Motiva	ation und Problemstellung	1
	1.2	Zielse	tzung	3
	1.3	Aufba	u der Arbeit	3
2	Gru	ndlage	en	4
	2.1	Indus	trielle Produktion und Produktionssysteme	4
		2.1.1	Fertigungstypen und -prinzipien	5
		2.1.2	Matrixproduktion	7
	2.2	Produ	ktionsplanung und -steuerung	9
		2.2.1	Aufgaben und Ziele der Produktionsplanung und -steuerung	10
		2.2.2	Klassifikation von Produktionssteuerungsproblemen	11
		2.2.3	Ansätze zur dynamischen Produktionsplanung und -steuerung	15
	2.3	Monte	e Carlo Tree Search	18
		2.3.1	Ablauf der Monte Carlo Tree Search	19
		2.3.2	Abgrenzung Monte Carlo Tree Search und Reinforcement Learning	22
	2.4	Lokale	e Suche als Verbesserungsverfahren	23
		2.4.1	Kritischer Pfad	24
		2.4.2	Gerichtete Graphen als Modellierung des Job Shop Scheduling	
			Problems für die lokale Suche	25
		2.4.3	Nachbarschaftstrukturen für die Produktionsplanung und -steuerung	25
3	Star	nd der	Forschung	28
	3.1	Kriteri	en zur Bewertung des Stands der Forschung	28
	3.2	Ansät	ze zur Lösung des Job Shop Scheduling Problems	29
		321	Exakte Verfahren	20

II Inhaltsverzeichnis

		3.2.2	Heuristiken	30			
		3.2.3	Maschinelles Lernen	35			
		3.2.4	Ansätze der robusten Produktionssteuerung und Verteilungsände-				
			rungsdetektion	37			
	3.3	Monte	e Carlo Tree Search in der Produktionssteuerung	41			
	3.4	Forscl	hungsdefizit	47			
4	Met	hode z	ur Steuerung einer Matrixproduktion	52			
	4.1	Proble	emeingrenzung, Steuerungsaufgabe und Zieldefinition	53			
		4.1.1	Problemeingrenzung	53			
		4.1.2	Steuerungsaufgabe	54			
		4.1.3	Steuerungsziele	54			
		4.1.4	Normierung der Zielgrößen	55			
	4.2	Ableit	ung realistischer Planzeiten aus Beobachtungen	57			
		4.2.1	Concept-Drift-Erkennung zur Detektion von Verteilungsänderungen	58			
		4.2.2	Verteilungsschätzung	60			
		4.2.3	Korrektur saisonaler Effekte	64			
	4.3	3 Multi-Objective Monte Carlo Tree Search					
		4.3.1	Modellierung als Markov-Entscheidungsproblem	64			
		4.3.2	Modifikationen der Selektionsphase	66			
		4.3.3	Modifikationen der Expansionsphase	71			
		4.3.4	Modifikationen der Rollout-Phase	79			
		4.3.5	Modifikationen der Backpropagation-Phase	80			
	4.4	Paralle	elisierung des Suchbaumaufbaus	81			
	4.5	Hybrid	disierung durch Postoptimierung mit lokaler Suche	83			
		4.5.1	Auswahl der Ausgangslösungen für die lokale Suche	84			
		4.5.2	Modellierung der Ausgangslösung als gerichteter Graph	85			
		4.5.3	Anpassung der Nachbarschaftsstruktur LSONE	86			
		4.5.4	Algorithmen der lokalen Suche	92			
		4.5.5	Reallokation eines Vorgangs	96			
		4.5.6	Abbruchkriterium der lokalen Suche	97			
	4.6	Protot	typische Umsetzung als Software-Demonstrator	98			
5	Unt	ersuch	ung der Produktionssteuerung	100			
	5.1	Anwe	ndungsfälle	102			
		5.1.1	Generisches Anwendungsproblem	102			
		5.1.2	Anwendungsfall der Getriebemontage	103			
		5.1.3	Benchmark-Problem aus der Literatur	104			

Inhaltsverzeichnis

	5.2	Anpas	ssung der Planzeiten basierend auf Realdaten	105
		5.2.1	Ermittlung der theoretischen Verteilung	105
		5.2.2	Erkennung von Verteilungsänderungen	106
		5.2.3	Erkennung von Trends und Saisonalitäten	109
	5.3	Lenku	ng des Suchfokus im mehrdimensionalen Lösungsraum	110
		5.3.1	Auswirkungen der Aktionsgenerierung auf den Suchfokus	110
		5.3.2	Parallelisierung zur zeitgleichen Exploration des Suchraums	122
		5.3.3	Alternierende Zielgewichtung zur sequentiellen Exploration des	
			Suchraums	123
		5.3.4	Auswirkung der lokalen Suche auf den Suchfokus	125
		5.3.5	Zusammenfassung	135
	5.4	Anstie	eg der Lösungsgüte	136
		5.4.1	Einfluss der Selektionsfunktion	136
		5.4.2	Einfluss der intelligenten Einschränkung der Aktionen auf den An-	
			stieg der Lösungsgüte	141
		5.4.3	Einfluss der Parallelisierung auf den Anstieg der Lösungsgüte	142
		5.4.4	Einfluss lokaler Suche auf den Anstieg der Lösungsgüte	144
		5.4.5	Zusammenfassung	146
	5.5	Bestin	nmung der Lösungsgüte	147
		5.5.1	Vergleich mit exakten Verfahren	147
		5.5.2	Vergleich anhand von Benchmark-Problemen aus der Literatur	150
		5.5.3	Erprobung am Anwendungsfall der Getriebemontage	151
6	Disk	kussioi	n und Ausblick	155
	6.1	Diskus	ssion	155
	6.2	Ausbli	ck	157
7	Zus	ammer	nfassung	159
Εi	gene	Veröff	entlichungen	161
Lit	eratu	ırverze	eichnis	163
Αk	bildı	ungsve	erzeichnis	179
Та	belle	nverze	ichnis	184
Ar	nhanç			XIV
			ation von Produktionssteuerungsproblemen für die einstufige Fertigung siche Anwendungsprobleme	XIV XVI

IV Inhaltsverzeichnis

A3 Anwendungsfall aus der Getriebemontage	XVIII		
A4 Gemischt-ganzzahliges Optimierungsproblem			
A5 Belegungspläne zur Demonstration des Einflusses der Aktionsgenerierung			
auf den Suchfokus	XXVIII		
A6 Hypervolumen für das 12x5 Problem	XXX		
A7 Optimale Belegungspläne für das exakte Referenzproblem	XXXI		