Dominik Hilbrich

Universelles Prüfsystem für innovative Schutz- und Automatisierungssysteme in Smart Grids

Band 22

Universelles Prüfsystem für innovative Schutz- und Automatisierungssysteme in Smart Grids

Der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Dortmund

vorgelegte

Dissertation

zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.)

von

M. Sc. Dominik Hilbrich aus Werdohl

Referent: Prof. Dr.-Ing. Christian Rehtanz Korreferent: Prof. Dr.-Ing. Johann Jäger

Tag der mündlichen Prüfung: 05.10.2021

Dortmunder Beiträge zu Energiesystemen, Energieeffizienz und Energiewirtschaft

herausgegeben von: Prof. Dr.-Ing. Christian Rehtanz

Band 22

Dominik Hilbrich

Universelles Prüfsystem für innovative Schutzund Automatisierungssysteme in Smart Grids

D 290 (Diss. Technische Universität Dortmund)

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dortmund, Technische Univ., Diss., 2021

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8308-8 ISSN 2567-2908

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft der Technischen Universität Dortmund. Zu Teilen wurde meine wissenschaftliche Arbeit durch die RWTÜV-Stiftung finanziert, wofür ich mich herzlich bedanken möchte.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Christian Rehtanz für die Möglichkeit am Institut meine wissenschaftliche Arbeit durchzuführen. Er hat mich in dieser Zeit fachlich und persönlich hervorragend betreut und mich bei der Umsetzung der gesamten Arbeit stets unterstützt. Durch die mir gebotene Möglichkeit mich frei zu entwickeln, konnte ich mich mit den verschiedensten Themen befassen und mich so in vielen Bereichen der Energieverteilung aus technischer Perspektive einarbeiten.

Ferner danke ich Herrn Prof. Dr.-Ing. Johann Jäger vom Lehrstuhl für Elektrische Energiesysteme der Friedrich-Alexander-Universität Erlangen-Nürnberg für die freundliche Übernahme des Korreferats.

Allen Mitarbeitern und Studierenden, die mich bei der Anfertigung meiner Dissertation auf die ein oder andere Weise unterstützt und begleitet haben, danke ich für die freundschaftliche und kollegiale Zusammenarbeit. Namentlich möchte ich mich bedanken bei Kay Görner, Ulf Häger, Willy Horenkamp, Theresa Noll und Johannes Rolink, die mich als kollegiale Mentoren geprägt haben, sowie bei meinem Team, Marvin Albrecht, Björn Bauernschmitt, Björn Martin Keune, Rajkumar Palaniappan, Sebastian Raczka und Michael Steglich für die tolle Zusammenarbeit.

Nicht zuletzt gilt mein Dank meiner baldigen Frau, Dina Corbeck, für viel Liebe, Geduld und die motivierenden Worte.

Dortmund, im März 2021

Kurzfassung

Bei der Entwicklung von Anwendungen in Smart Grids stellt sich die Frage, wie sich komplexe Schutz- und Automatisierungsfunktionen zukünftig effektiv prüfen lassen. Insbesondere die hohe Anzahl an Systemen und deren gegenseitige Beeinflussung ist eine Herausforderung. Die konventionelle Prüfung von intelligenten elektronischen Geräten in den elektrischen Verteilnetzen basiert auf Ansätzen der Open-Loop-Prüfung im Sinne einer Funktionsprüfung. Im wissenschaftlichen Kontext sind Closed-Loop-Prüfungen für Schutz- und Automatisierungssysteme oft diskutiert, kommen aufgrund des Aufwandes bei der Durchführung der Prüfung in der Praxis aber nicht oder nur sehr selten zum Einsatz. In der vorliegenden Arbeit wurde ein Prüfsystem entwickelt, welches Closed-Loop-Prüfungen ermöglicht. Dabei wurde das System so aufgebaut, dass es neben der konventionellen Typprüfung für Schutzgeräte ebenso die sogenannte anwendungsorientierte Prüfung ermöglicht. Die Netzmodelle realer Netze werden auf einem Echtzeitsimulator ausgeführt, um in einer Hardware-in-the-Loop-Simulation Smart-Grid-Automatsierungssysteme für genau den Anwendungsfall zu prüfen, in dem sie tatsächlich zum Einsatz kommen. Zur Reduktion des Aufwandes bei der Durchführung der Prüfung wurde ein Konzept zur automatischen Netzmodellerstellung implementiert und der Prüfablauf teilautomatisiert. Die automatische Netzmodellerstellung des Prüfsystems wurde verifiziert und die anwendungsorientierte Prüfung für Beispielanwendungen durchgeführt.

Abstract

The development of applications in smart grids poses the question of how complex protection and automation functions can be effectively tested in the future. In particular, the high number of systems and their mutual influence is challenging. Conventional testing of intelligent electronic devices in electrical distribution grids is based on open-loop testing approaches in the sense of functional testing. In the scientific context, closed-loop testing for protection and automation systems is often discussed, but in practice it is not or only very rarely used due to the complexity of this kind of tests. In this thesis, a closed-loop test system was developed. This system was designed in such a

way that, in addition to conventional type testing for protection functions, it also enables so-called application-oriented testing. The network models of the real networks are executed on a real-time simulator to test smart grid automation systems in a hardware-in-the-loop simulation for exactly the application in which they are actually used. To reduce the effort required to carry out the test, a concept for automatic network model generation was implemented and the test procedure was partially automated. The automatic network model generation of the test system was verified and the application-oriented test was carried out for example applications.

Inhaltsverzeichnis

1	\mathbf{Ein}	<u>r</u>	1		
	1.1	Motiv	ration	1	
	1.2	Forsch	nungsfragen	5	
	1.3	Aufba	u der Arbeit	6	
2	Sma	art-Gr	id-Konzepte	9	
	2.1	Schutz	z- und Automatisierungssysteme in Smart Grids	9	
	2.2	Smart	s-Grid-Konzept am Institut ie 3	12	
	2.3	Funktionen in Smart Grids			
		2.3.1	Schutzfunktionen	20	
		2.3.2	Kurzschluss- und Erdschlussrichtungsanzeige	32	
		2.3.3	Zustandsbestimmung	33	
		2.3.4	Engpassmanagement in der MS	38	
3	Prüfsystem für Smart Grids				
	3.1	Prüfu	ng von Schutz- und Automatisierungssystemen	41	
		3.1.1	Typprüfungen gemäß IEC 60255-1XX $\dots \dots$.	48	
		3.1.2	IEC 60255-151	49	
		3.1.3	IEC 60255-121	51	
	3.2	Einfül	hrung der anwendungsorientierten Prüfung	52	
	3.3	Daten	amodelle	58	
		3.3.1	IEC 61850 - Substation Configuration Language $\ \ .$	59	
		3.3.2	IEC 61970 - Common Information Model	60	
		3.3.3	Harmonisierung von SCL und CIM	63	
	3.4	Benut	zeroberfläche des Prüfsystems	65	
	3.5	Туррі	rüfungen von Distanzschutzsystemen	66	
4	Ver	ifikatio	on der anwendungsorientierten Prüfung	89	
	4.1	Verifil	kation der automatischen Netzmodellerstellung	90	
		411	Fiktives Referenznetz	90	

		4.1.2	CIGRE LV-Benchmark-Grid	. 93
		4.1.3	Reales 10-kV-Mittelspannungsnetz	. 94
	4.2	Prüfu	ng von Schutzfunktionen	. 97
		4.2.1	Distanzschutzprüfung	. 97
		4.2.2	Prüfung eines Distanzschutzes bei dynamischer Netz-	
			stützung	. 100
5	Dur	chfüh	rung der anwendungsorientierten Prüfung	105
	5.1	Anwe	ndungsorientierte Prüfung mit Referenznetzen	. 106
		5.1.1	Prüfung eines Distanzschutzes mit automatischer Impe-	
			danzkorrektur	. 106
		5.1.2	Prüfung der koordinierten Spannungsregelung	. 111
		5.1.3	Prüfung eines zentralisierten Distanzschutzsystems im	
			Maschennetz	
	5.2	Prüfu	ngen in Netzen der Mittelspannung	. 126
	5.3	Prüfu	ngen in Netzen der Niederspannung	. 129
6	Zus	amme	nfassung und Ausblick	135
	6.1	Zusan	nmenfassung	. 135
	6.2	Ausbl	ick	. 137
\mathbf{A}	bbild	lungsv	erzeichnis	140
Ta	abelle	enverz	eichnis	145
\mathbf{A}	bkür	zungsv	verzeichnis	147
Fo	orme	lverzei	ichnis	151
Li	terat	urver	zeichnis	153
W	isser	nschaft	tlicher Tätigkeitsnachweis	163
\mathbf{A}	nhan	g A V	Verwendete logische Knoten	173
\mathbf{A}	nhan	g B N	Netzdaten für Validierung	175
	B.1 10-kV-Referenznetz			. 175
	B.2	$20-\mathrm{kV}$	-Referenznetz	. 177

Anhang C	GUI des Prüfsystems	17 9
Anhang D	Typprüfung PDIS	183
Anhang E	Zentralisierter PDIS	185