


Aushärtung von Klebschichten im Blick

© SK

Zerstörungsfreie Qualitätssicherung mit unilateraler NMR

Norbert Halmen, Ulrich Hack, Linda Mittelberg, Eduard Kraus, Benjamin Baudrit, Thomas Hochrein. Martin Bastian

Bildung & Forschung

SKZ – Das Kunststoff-Zentrum (Herausgeber)

Aushärtung von Klebschichten im Blick

Zerstörungsfreie Qualitätssicherung mit unilateraler NMR

1. Auflage

SKZ-Forschung und Entwicklung

SKZ – Das Kunststoff-Zentrum (Hrsg.)

Aushärtung von Klebschichten im Blick

Zerstörungsfreie Qualitätssicherung mit unilateraler NMR

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Die Autoren:

Norbert Halmen Ulrich Hack Linda Mittelberg Eduard Kraus Benjamin Baudrit Thomas Hochrein Martin Bastian

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8243-2 ISSN 2364-754X

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Das Vorhaben 20564 N der Forschungsvereinigung Fördergemeinschaft für das Süddeutsche Kunststoff-Zentrum e.V. (FSKZ) wurde über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Wir bedanken uns beim Fördermittelgeber für die finanzielle Unterstützung. Ebenso gilt unser Dank den Mitgliedern des projektbegleitenden Ausschusses für die hilfreichen Anregungen und lebhaften Diskussionen bei den Ausschusssitzungen. Sie haben maßgeblich zu dieser Arbeit beigetragen.

Darüber hinaus bedanken wir uns bei der DELO Industrie Klebstoffe GmbH & Co. KGaA, der Dreve ProDiMed GmbH sowie der Sika Deutschland GmbH für die Bereitstellung von Probenmaterial und Zubehör. Weiterhin gilt unser Dank der Bruker BioSpin GmbH für die Unterstützung mit Rheo-NMR-Messungen.

Kurzfassung

In dieser Forschungsarbeit wurden die Möglichkeiten und Grenzen der unilateralen NMR (uNMR) für die Bestimmung des Aushärtegrades an verschiedenen Klebstoffen (1K lichtbzw. feuchtigkeitshärtend und 2K) evaluiert. Dabei dienten gängige Messverfahren (DSC, Platte/Platte-Rheometer, DEA, NIR-Spektroskopie, Zugscherprüfung, Zentrifugal-Adhäsionstest) als Referenz zur Bewertung der uNMR-Ergebnisse.

Das uNMR-System wurde um eine integrierte (Thermoelemente) und externe Temperaturüberwachung (IR-Kamera) erweitert. Begleitend erfolgten numerische Simulationen zu den maximalen Verweildauern heißer Proben auf dem Messsystem vor der Beschädigung der Magnete sowie die Untersuchung der Einflüsse von Messparametern sowie Proben- und Umgebungstemperatur auf die Magnettemperatur.

Die Messergebnisse der uNMR wurden mit verschiedenen Auswerteverfahren (Fits, sequenzielle Bins, Echosummen) betrachtet. Die normierten Echosummen lieferten sehr gut reproduzierbare Ergebnisse und eigneten sich zur Beschreibung des Aushärtegrades. Die durchgeführten Profilmessungen konnten zum Auffinden der Position des Messvolumens genutzt werden. Die Detektion von Oberflächenvorbehandlungen war mit dem verwendeten uNMR-System nicht möglich.

Weiterhin erfolgten kombinierte Messungen von NMR mit Platte/Platte-Rheometer sowie uNMR mit THz.

Auf Basis der normierten Echosummen wurden Aushärtegradmodelle erstellt und die uNMR im Vergleich zu den Referenzverfahren bewertet.

Die uNMR ermöglicht die zerstörungsfreie Charakterisierung von Klebeverbindungen nicht leitfähiger Materialpaarungen mit dünnen, planaren Klebschichten und bietet kMU durch ihren Einsatz einen potenziellen Mehrwert durch eine verbesserte Qualitätskontrolle. Durch die bereitgestellten Handlungsempfehlungen wird den Unternehmen der Einstieg in dieses Messverfahren erleichtert.

Zudem wurde weiteres Entwicklungspotenzial hinsichtlich der Nutzung der uNMR im Prozess aufgezeigt.

Abstract

In this research work, the capabilities and limitations of single-sided NMR (uNMR) were evaluated for the determination of the degree of curing on different adhesives (1K light-or humidity-curing and 2K). Common testing methods (DSC, plate/plate rheometer, DEA, NIR spectroscopy, tensile shear test, centrifugal adhesion test) were used as reference to assess the uNMR results.

The uNMR system was extended by integrated (thermocouples) and external temperature monitoring (IR camera). This was supported by numerical simulations of the maximum residence times of hot samples on the measuring system before the magnets were damaged, as well as an investigation of the influences of measurement parameters and sample and ambient temperature on the magnet temperature.

The measurement results of the uNMR were analyzed with different evaluation methods (fits, sequential bins, echo sums). Normalized echo sums provided very reproducible results and were suitable for describing the degree of curing. The profile measurements carried out could be used to find the position of the measuring volume. The detection of surface pre-treatments was not possible with the used uNMR system.

Furthermore, combined measurements of NMR with plate/plate rheometer as well as uNMR with THz were performed.

Based on the normalized echo sums, models of the degree of curing were created and uNMR was evaluated in comparison to the reference methods.

With the use of uNMR, the non-destructive characterization of bonded joints of non-conductive material combinations with thin, planar adhesive layers is possible and offers small and medium-sized enterprises a potential added value through improved quality control. Recommendations for action are provided to make it easier for companies to get started with this measurement technique.

In addition, further development potential regarding the use of uNMR in the process was indicated.

Inhaltsverzeichnis

Ab	kürzı	ungsvei	zeichnis	V
Pr	ojekts	teckbri	1.2 Klebeverbindungen und Oberflächenvorbehandlung	
1	Einl	eitung.		1
	1.1 1.2			
2	Star	ıd der T	Fechnik und Forschung	5
	2.1	Klebe	n von Kunststoffen	5
		2.1.1	Klebstoffe und Aushärtegrad	5
		2.1.2	Klebeverbindungen und Oberflächenvorbehandlung	5
	2.2	Prüfve	erfahren für Klebstoffe und Klebeverbindungen	6
		2.2.1	Dynamische Differenzkalorimetrie	6
		2.2.2	Rheologische Prüfungen	6
		2.2.3	Dielektrische Analyse	7
		2.2.4	(Nah-)Infrarot-Spektroskopie und multivariate Analyse	8
		2.2.5	Zugscherprüfung	9
		2.2.6	Zentrifugal-Adhäsionsprüfung	10
		2.2.7	Röntgen-Computertomografie, Luftultraschall und THz	10
		2.2.8	Magnetische Kernspinresonanz	11
	2.3	Bisher	rige Forschungsarbeiten	16
3	Lös	ungswe	g zur Erreichung des Forschungsziels	17
4	Dur	chgefül	hrte Arbeiten	19
	4.1	Herste	llung von Referenzproben	19
		4.1.1	Klebstoffe und Substrate	19
		4.1.2	Oberflächenvorbehandlungen und Probekörperherstellung	21
	4.2	Überw	vachung und Stabilisierung der Magnettemperatur	22
		4.2.1	Temperatursimulationen	22
		4.2.2	Integrierte und externe Temperaturüberwachung	23
		4.2.3	Untersuchung von Temperatureinflüssen	24
	4.3	Durch	führung von Referenzprüfungen	25
		4.3.1	Dynamische Differenzkalorimetrie	25
		4.3.2	Rheologische Untersuchung	25
		4.3.3	Dielektrische Analyse	26
		4.3.4	NIR-Spektroskopie	26
		4.3.5	Zugscherprüfung	27

II Inhaltsverzeichnis

		4.3.6	Zentrifugal-Adhäsionsprüfung	27
		4.3.7	Kombination aus Platte/Platte-Rheometer und Kernspinresonanz	z27
	4.4	uNMF	R-Messungen	28
		4.4.1	Messsystem und verwendete Einstellungen	28
		4.4.2	Mess- und Auswertesoftware	30
		4.4.3	Charakterisierung strahlungs- und feuchtehärtender 1K-Klebsto	ffe30
		4.4.4	Charakterisierung von 2K-Klebstoffen	31
		4.4.5	Parameteroptimierung	31
	4.5	uNMF	R-THz-Kombinationsmessungen	32
	4.6	Einsat	z der uNMR zur prozessnahen Qualitätssicherung	32
5	Disk	kussion	der Ergebnisse	33
	5.1	Tempo	eratureffekte bei uNMR-Messungen	33
		5.1.1	Numerische Simulationen	
		5.1.2	Unterschiedliche Messsequenz-Parameter	34
		5.1.3	Belichtung mit LED-Aushärtungslampe	
		5.1.4	Einflüsse von Proben- und Umgebungstemperatur	
	5.2	Refere	enzprüfungen an Klebstoffen und Klebeverbindungen	
		5.2.1	Dynamische Differenzkalorimetrie	
		5.2.2	Platte/Platte-Rheometer	40
		5.2.3	Dielektrische Analyse	41
		5.2.4	NIR-Spektroskopie	44
		5.2.5	Zugscherprüfung	49
		5.2.6	Zentrifugal-Adhäsionsprüfung	50
		5.2.7	Rheo-NMR	52
	5.3	Chara	kterisierung von Klebstoffen mit unilateraler Kernspinresonanz	53
		5.3.1	Bestimmung der T _I -Zeiten	53
		5.3.2	Bestimmung der T _{2eff} -Zeiten und Amplitudenverhältnisse	54
		5.3.3	Sequenzielles Binning	56
		5.3.4	Verwendung von Echosummen	57
		5.3.5	Profilmessungen	61
		5.3.6	Parameteroptimierung	62
		5.3.7	Kombinierte Messungen uNMR/THz	63
	5.4	Prozes	süberwachung mittels uNMR	64
		5.4.1	NMR-Aushärtegradmodell auf Basis normierter Echosummen	64
		5.4.2	Vergleichsmodelle auf Basis der Referenzverfahren	65
	5.5	Bewer	tung der Aushärtegradbestimmung mit unilateraler NMR	68
	5.6	Weiter	rer Forschungs- und Entwicklungsbedarf	69

Inhaltsverzeichnis III

6	Handlungsempfehlungen zur Nutzung der uNMR bei Klebstoffen und Klebeverbindungen	71
7	Zusammenfassung	73
A	Anhang	75
Lit	eraturverzeichnis	7 9
Ab	bildungsverzeichnis	87
Tal	bellenverzeichnis	93