Forschungsberichte des Bremer Instituts für Messtechnik, Automatisierung und Qualitätswissenschaft

Herausgeber: Prof. Dr.-Ing. habil. Andreas Fischer

Axel Freiherr von Freyberg

Automatische Partitionierung komplexer kombinierter Geometrien durch Ganzheitliche Approximation

Band 4

Bremer Institut für Messtechnik, Automatisierung und Qualitätswissenschaft

Automatische Partitionierung komplexer kombinierter Geometrien durch Ganzheitliche Approximation

Vom Fachbereich Produktionstechnik der UNIVERSITÄT BREMEN

> zur Erlangung des Grades Doktor-Ingenieur genehmigte

Dissertation

von

Dipl.-Ing. Axel Freiherr von Freyberg

 Gutachter: Prof. Dr.-Ing. habil. Andreas Fischer, Universität Bremen
Gutachterin: Prof. Dr.-Ing. habil. Sophie Gröger, Technische Universität Chemnitz

Tag der mündlichen Prüfung: 19. März 2021

Forschungsberichte des Bremer Instituts für Messtechnik, Automatisierung und Qualitätswissenschaft

Band 4

Axel Freiherr von Freyberg

Automatische Partitionierung komplexer kombinierter Geometrien durch Ganzheitliche Approximation

D 46 (Diss. Universität Bremen)

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bremen, Univ., Diss., 2021

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8029-2 ISSN 2570-2491

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Abstract

There is a growing need to measure the geometric characteristics of components more precisely, faster and, if possible, directly in the manufacturing process. This requires the development of new measuring principles as well as flexible and automated evaluation methods. For the evaluation of dimensional, shape and positional deviations, the measurement data must be partitioned into corresponding geometric elements. To perform this partitioning automatically and reproducibly with low uncertainty has not yet been universally solved. One approach here is the Holistic Approximation (HA), which partitions the measurement data based on a geometric model. However, the application of the HA is limited to combinations of geometric primitives and the achievable measurement uncertainty has not been investigated so far. Therefore, the aim of this thesis is to extend the HA for the evaluation of arbitrarily complex geometry combinations, to characterize it with respect to measurement uncertainties and computation times, and to validate it by means of two key applications.

The HA is extended for the first time by a root point iteration in order to determine the shortest point distances for the geometric approximation even for complex geometric elements. Furthermore, the Levenberg-Marquardt method for solving nonlinear approximation tasks as an alternative to the Gauss-Newton method as well as a weighted least squares approximation are integrated. Results show that weighting reduces the uncertainty of the approximated shape parameters of geometry elements with a small number of measuring points. At the same time, however, the uncertainty of the parameters of other geometric elements increases. With the extension of an automatic detection of outliers, the HA also allows in-process 100 % testing for more than 240 parts per minute.

The extended HA was used for the automatic geometry check of microforming tools and for the determination of (unknown) gearing parameters. Both applications contain complex geometric elements such as an ellipse or a crowned involute and are subject to tolerances in the micrometer range. Analyses of variances did not show any signs of systematic influences on the evaluation results of the HA for simulated measuring data. Thus, the HA was verified for both applications. Furthermore, the achievable random deviations of the approximated shape parameters could be estimated. For measurement data with a uniformly distributed noise of $\pm 0.5 \,\mu\text{m}$, the standard uncertainty is 0.8 μm for the ellipse semi-axes and 0.9 μm for the base circle radius of the gearing involute. For validation purposes, measured data were recorded with a coordinate measuring machine, evaluated and compared with reference values. Standard uncertainties between 0.7 and 1.2 μm were estimated for the evaluation of the elliptical semi-axes with the HA. The root-mean-square deviations between the measured data and the approximating ellipses of both the HA and the reference values by a maximum of 0.2 μm .

The validation of the extended HA on two different key applications demonstrates the universal applicability without restrictions regarding geometric complexity. The integrated rule-based partitioning of the measurement data is optimized and enables the automatic evaluation of geometric deviations with minimal measurement uncertainty. In the future, it is conceivable to use the HA for example also for the evaluation of signal characteristics, which can be parametrically described piecewise.

Kurzfassung

Der Bedarf wächst, geometrische Merkmale von Bauteilen präziser, schneller und möglichst im Fertigungsprozess zu messen. Hierfür sind neben der Entwicklung von neuen Messprinzipen insbesondere flexible und automatisierte Auswertemethoden gefragt. Für die Auswertung von Maß-, Form- und Lageabweichungen sind die Messdaten in entsprechende geometrische Elemente zu partitionieren. Diese Partitionierung automatisch und reproduzierbar mit geringer Unsicherheit durchzuführen, ist bisher nicht universell gelöst. Einen Ansatz stellt hier die Ganzheitliche Approximation (GA) dar, welche die Messdaten modellbasiert partitioniert. Die Anwendung der GA ist jedoch auf Kombinationen aus einfachen Regelgeometrien beschränkt, und die erreichbare Messunsicherheit wurde bisher nicht untersucht. Das Ziel dieser Arbeit besteht also darin, die GA für die Auswertung beliebig komplexer Geometriekombinationen zu erweitern, hinsichtlich Messunsicherheiten und Rechenzeiten zu charakterisieren und anhand zweier Schlüsselanwendungen zu validieren.

Die GA wird erstmals um eine Fußpunktiteration erweitert, um auch für komplexe Geometrieelemente die kürzesten Punktabstände für die geometrische Approximation zu bestimmen. Darüber hinaus werden alternativ zum Gauß-Newton Verfahren das Levenberg-Marquardt Verfahren zur Lösung nichtlinearer Approximationsaufgaben sowie eine gewichtete Least-Squares Approximation integriert. Ergebnisse zeigen, dass eine Wichtung die Unsicherheit der approximierten Formparameter von Geometrieelementen mit geringer Messpunkteanzahl reduzieren kann. Gleichzeitig erhöht sich dabei jedoch die Unsicherheit der Parameter anderer Geometrieelemente. Mit der Erweiterung einer automatischen Erkennung von Ausreißern sind mit der GA zudem prozessbegleitende 100 %-Prüfungen für über 240 Teile pro Minute möglich.

Die erweiterte GA wurde für die automatische Geometrieprüfung von Mikrotiefziehwerkzeugen und für die Bestimmung (unbekannter) Verzahnungsparameter angewendet. Beide Anwendungen enthalten komplexe Geometrieelemente wie eine Ellipse oder eine ballige Evolvente und unterliegen Toleranzen im Mikrometerbereich. Varianzanalysen ergaben für simulierte Messdaten keine Anzeichen systematischer Einflüsse auf die Auswerteergebnisse der GA. Damit wurde die GA für beide Anwendungen verifiziert. Zudem konnten die erreichbaren zufälligen Abweichungen der approximierten Formparameter abgeschätzt werden. Für Messdaten mit einem gleichverteilten Rauschen von $\pm 0,5$ µm beträgt die Standardunsicherheit 0,8 µm für die Ellipsenhalbachsen und 0,9 µm für den Grundkreisradius der balligen Evolvente. Zur Validierung wurden Messdaten mit einem Koordinatenmessgerät (KMG) erfasst, ausgewertet und mit Referenzwerten verglichen. Für die Auswertung der Ellipsenhalbachsen mit der GA wurden Standardunsicherheiten zwischen 0,7 und 1,2 µm abgeschätzt. Die mittleren quadratischen Abweichungen der Messdaten zu den approximierenden Ellipsen der GA und der Referenzsoftware betragen jeweils < 1 µm. Bei der Verzahnungsmessung weichen die Ergebnisse der GA maximal 0,2 µm von den Referenzwerten ab.

Die Validierung der erweiterten GA an zwei unterschiedlichen Schlüsselanwendungen demonstriert die universelle Anwendbarkeit ohne Einschränkungen bezüglich der geometrischen Komplexität. Die integrierte regelbasierte Partitionierung der Messdaten erfolgt optimal und ermöglicht die automatische Auswertung geometrischer Abweichungen mit minimaler Messunsicherheit. Zukünftig ist denkbar, die GA beispielsweise auch zur Auswertung von Signalverläufen einzusetzen, die stückweise parametrisch beschreibbar sind.

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Fachgebiet Mess-, Steuerungs- und Regelungstechnik (MSR) der Universität Bremen sowie im Forschungsbereich Messtechnik, Automatisierung und Qualitätswissenschaft (MAQ) im Bremer Institut für Betriebstechnik und angewandte Arbeitswissenschaft (BIBA) bzw. im Bremer Institut für Messtechnik, Automatisierung und Qualitätswissenschaft (BIMAQ). Ein großer Teil der Forschungsarbeiten entstand im Rahmen des Projektes "GlauCAD – Glaucoma Prevention by Computer Aided Diagnostics", gefördert durch die EU (QLG1-2000-00651) und im Rahmen des Teilprojekts B5 – Sichere Prozesse im Sonderforschungsbereich 747 – Mikrokaltumformen, gefördert durch die DFG.

Ich möchte mich bei Herrn Prof. Dr.-Ing. Gert Goch bedanken, der die Anregung zu dieser Arbeit gab und ihre Durchführung ermöglichte. Ein großer Dank gilt insbesondere Prof. Dr.-Ing. habil. Andreas Fischer, der mir den Abschluss der Dissertation ermöglichte und mich dazu ermutigte, sowie in vielen Diskussionen einen wertvollen Beitrag zur inhaltlichen Gestaltung leistete und sich schließlich als Gutachter zur Verfügung gestellt hat.

Besonders bedanke ich mich auch bei Herrn Prof. Dr. rer. nat. Horst Selzer für seine unermüdliche Unterstützung. Er initiierte und begleitete das Projekt GlauCAD und gab mir in vielen Diskussionen wertvolle Anregungen. Frau Prof. Dr.-Ing. habil. Sophie Gröger möchte ich für die Begutachtung dieser Arbeit herzlich danken. Des Weiteren gilt mein Dank Prof. Dr.-Ing. habil. Carsten Heinzel, Dr.-Ing. Lydia Achelis, Merlin Mikulewitsch und Jacob Friedrich für die Mitwirkung im Prüfungsausschuss, wodurch der Abschluss meiner Promotion schließlich möglich wurde.

Ein herzliches Dankeschön geht natürlich auch an alle Kollegen, insbesondere Dr.-Ing. Dirk Stöbener, Dr.-Ing. Anke Günther, Marc Pillarz, Dr.-Ing. Jörg Peters, Dr.-Ing. Karsten Lübke und Dr.-Ing. Yandong Tang für wertvolle thematische Diskussionen, Frank Horn für die unermüdliche Unterstützung bei der Durchführung von Messungen, Uwe Reinhard für die vielfältige Unterstützung aus seiner mechanischen Werkstatt sowie Eva Schultze, Sylvia Rosenhagen, Michael Essert, Stephan Gesche und Hiltrud Kallasch für die gute Zusammenarbeit bezüglich meiner Promotion und den zugehörigen Projekten.

Schließlich gilt mein ganz besonderer Dank meiner Familie, die mich immer bedingungslos unterstützt und gefördert hat! Insbesondere die Liebe und Geduld meiner Frau Carina sowie ihr Engagement, mir in vielen Bereichen des Lebens den Rücken frei zu halten, gaben mir die Kraft für dieses Vorhaben.

Inhaltsverzeichnis

Verzeichnis wichtiger Formelzeichen und Abkürzungen VII			
1	Einl	leitung	1
	1.1	Stand der Forschung und Technik	2
		1.1.1 Datenerfassung	3
		1.1.2 Datenauswertung	5
	1.2	Ziel und Struktur der Arbeit	12
2	Gru	ndlagen und Konzept der ganzheitlichen Approximation	13
	2.1	Formulierung eines Approximationsproblems	14
		2.1.1 Vektornorm	15
		2.1.2 Zielfunktion	16
	2.2	Bestimmung der Punktabstände	16
		2.2.1 Analytische Abstandsberechnung	17
		2.2.2 Fußpunktiteration	18
	2.3	Lösung des Minimierungsproblems	20
		2.3.1 Iterative Lösung mit linearisierter Zielfunktion	20
		2.3.2 Iterative Lösung mit linearisierter Abstandsfunktion	22
		2.3.3 Singulärwertzerlegung	26
	2.4	Koordinatentransformation	27
	2.5	Ausreißerdetektion	28
	2.6	Ganzheitliche Approximation	29
3	Cha	rakterisierung der ganzheitlichen Approximation	33
	3.1	Unsicherheitsabschätzung	34
		3.1.1 Zufällige Einflüsse	34
		3.1.2 Systematische Einflüsse	35
		3.1.3 Unsicherheit approximierter Parameter	39
		3.1.4 Ergebnisse	40
	3.2	Reduzierung von Unsicherheiten	42
	3.3	Konvergenzverhalten	46
		3.3.1 Vergleich der Verfahren nach Gauß-Newton und Levenberg-Marquard	dt 46
		3.3.2 Gauß-Newton Verfahren mit variabler Schrittweite	48
	3.4	Automatische Ausreißerdetektion	49
	3.5	Rechenzeit	50
	3.6	Fazit	52

4	Aut	omatische Geometrieprüfung von Mikrotiefziehwerkzeugen	55
	4.1	Mikrotiefziehen	55
	4.2	Geometriemodell	57
	4.3	Verifikation und Abschätzung der Messunsicherheit	58
		4.3.1 Systematische Abweichungen	60
		4.3.2 Zufällige Abweichungen	60
		4.3.3 Optimalität der Partitionierung	62
	4.4	Validierung	64
	4.5	Fazit	65
5	Best	immung von (unbekannten) Verzahnungsparametern	67
	5.1	Evolventenverzahnungen und Qualitätsprüfung	68
		5.1.1 Grundlagen evolventischer Verzahnungen	68
		5.1.2 Verzahnungsprüfung	70
	5.2	Geometriemodell und Implementierung	71
	5.3	Verifikation und Abschätzung der Messunsicherheit	73
	5.4	Validierung	74
	5.5	Zahnradprüfung mit bekannten Nennwerten	76
	5.6	Fazit	77
6	Zus	ammenfassung und Ausblick	79
	6.1	Ausgangslage der Arbeit	79
	6.2	Wissenschaftlicher Fortschritt	80
	6.3	Weiterführender Forschungsbedarf	82
Lit	teratu	urverzeichnis	84
A	Form	neln und Berechnungsschritte	93
	A.1	Fußpunktiteration	93
	A.2	Singulärwertzerlegung	95
	A.3	Rotationsmatrizen	96
Eig	gene	Veröffentlichungen	97
Be	treut	e studentische Arbeiten	105

Verzeichnis wichtiger Formelzeichen und Abkürzungen

Lateinische Symbole

Symbol	Bedeutung
а	Auswertegrenze bei der Verzahnungsprüfung
a	Parametervektor
\mathbf{a}_g	Vektor der Geometrieparameter
\mathbf{a}_p	Vektor der Lageparameter
a_m	<i>m</i> -ter approximierter Parameter
C_{α}	Amplitude der Evolventen-Balligkeit
C_f	Auswertegrenze bei der Verzahnungsprüfung
C^g	Geometrische Stetigkeit des Grades g
С	reelle Zahl
d	Vektor mit Punktabständen d _i
ã	Modifizierter Vektor mit Punktabständen im Rahmen des Levenberg-
	Marquardt Verfahrens
d _{e,i}	i-ter orthogonaler Punktabstand zu einer Ebene
$d_{t,j}$	j-ter orthogonaler Punktabstand zu einem Torus
$d_{z,k}$	k-ter orthogonaler Punktabstand zu einem Zylinder
D_z	Bohrungsdurchmesser
е	gleichverteiltes Rauschen (Intervall [-e/2 e/2]) in Normalenrichtung
	der Solloberfläche
E(q)	Erwartungswert einer Größe q
f	implizit formulierte Funktion
$f_{H\alpha}$	Profilwinkelabweichung einer Evolventenverzahnung
f_r	Reduzierungsfaktor
F_m	Prüfgröße der Varianzanalyse
F_w	Prüfgröße des Welch F-Tests
G	Teststatistik im Grubbs-Ausreißertest
H_0	Nullhypothese
Ι	Einheitsmatrix
J	Jacobimatrix
Ĵ	Modifizierte Jacobimatrix im Rahmen des Levenberg-Marquardt Verfah-
	rens
k	Iterationsschritt

Symbol	Bedeutung
1	<i>l</i> -te Stichprobe
l_r	Wälzweg eines Evolventenpunktes
L	Anzahl Stichproben
Lα	Länge des Auswertebereichs für Zahnrad-Profilabweichungen
М	Anzahl Freiheitsgrade (freie Parameter der Approximation)
$MQ_{m,A}$	mittlere Abweichungsquadrate für den Parameter a_m bedingt durch den
	Faktor A
$MQ_{m,A}^{Welch}$	mittlere gewichtete Abweichungsquadrate für den Parameter a_m bedingt
	durch den Faktor A im Rahmen des Welch F-Tests
$MQ_{m,r}$	mittlere Abweichungsquadrate der Residuen für den Parameter a_m
m_t	Tangentensteigung
m_n	Normalmodul (eines Zahnrades)
Ν	Anzahl Messwerte, Anzahl Wiederholungen, Dimension eines Vektors
0 _a	Messabweichung eines Ausreißers
P_{MPE}	maximal zulässige Antastabweichung
р	natürliche Zahl
Q_p	p-Norm
q	Messgröße
q_i	<i>i</i> -te Beobachtung der Messgröße <i>q</i>
ą	Mittelwert von N wiederholten Beobachtungen q_i der Messgröße q
R	Radius eines Zahnrads
R	Rotationsmatrix
R_l	große Halbachse einer Ellipse
R_s	kleine Halbachse einer Ellipse
r _b	Grundkreisradius einer Evolvente (-nverzahnung)
r _{bk}	Grundkreisradius der Evolvente einer Kopfrücknahme
r _c	Zylinderradius
r _{Ca}	Anfangsradius der Kopfrücknahme
r _i	Polarradius des <i>i</i> -ten Messpunktes
r_k	(Kreis-)Radius
r_p	Tastkugelradius
<i>r</i> _r	Torus-Ringradius
rs	Schaftradius
r_w	Torus-Schlauchradius
S	Matrix mit singulären Werten S_m auf der Hauptdiagonalen (aus Singu-
	lärwertzerlegung)
$SQ_{m,A}$	Quadratsumme der Abweichungen für den Parameter a_m bedingt durch
	den Faktor A
$SQ_{m,A}^{Welch}$	Quadratsumme der gewichteten Abweichungen für den Parameter a_m
	bedingt durch den Faktor A im Rahmen des Welch F-Tests
$SQ_{m,r}$	Quadratsumme der Residuen für den Parameter a_m
$SQ_{m,t}$	gesamte Quadratsumme der Abweichungen für den Parameter a_m

Symbol	Bedeutung
S	empirische Standardabweichung
Т	Prüfgröße des Welch Tests
T_1	Gewichtete Varianz zwischen den absoluten Abweichungen der Stich-
	proben (Levene-Test)
T_2	Gewichtete Varianz innerhalb der absoluten Abweichungen der Stichpro-
	ben (Levene-Test)
t_c	Rechenzeit
U	Messunsicherheit
U	orthogonale (unitäre) Matrix (aus Singulärwertzerlegung)
U_a	Kovarianzmatrix der approximierten Parameter a
U_d	Kovarianzmatrix der orthogonalen Abstände d _i
$u(a_m)$	Standardunsicherheit des approximierten Parameters a_m
V	Vektorraum
V	orthogonale (unitäre) Matrix (aus Singulärwertzerlegung)
W _{appr}	Approximierende Oberfläche
W	Gewichtsmatrix einer Approximation, berechnet aus der Jacobimatrix J
$w_{k,m}$	Komponenten der Gewichtsmatrix W
w_l	Gewichtsfaktor der l -ten Stichprobe im Rahmen des Welch F-Tests
\mathbf{x}_i	<i>i</i> -ter Messpunkt mit Koordinaten (x, y, z)
\mathbf{x}'_i	der dem <i>i</i> -ten Messpunkt zugehörige Funktionswert (Fußpunkt) mit Ko-
	ordinaten (x', y', z')
Х	Matrix der Koordinaten (x, y, z) der N Messpunkte
X ′	Matrix der Koordinaten (x',y',z') der den N Messpunkten zugehörigen
	Funktionswerten (Fußpunkte)
Ζ	Zähnezahl (eines Zahnrades)

Griechische Symbole

Symbol	Bedeutung
α	Signifikanzniveau (einer Hypothese)
α_t	Stirn-Eingriffswinkel (einer Verzahnung)
α_{tk}	Stirn-Eingriffswinkel der Kopfrücknahme (einer Verzahnung)
β	Schrägungswinkel (einer Verzahnung)
δ	Punktabstand mit Nebenbedingung (Lagrange-Funktion)
δR_l	Längenabweichung der großen Halbachse einer Ellipse
δR_s	Längenabweichung der kleinen Halbachse einer Ellipse
δr_b	Grundkreisradiusabweichung einer Evolvente
δr_{bk}	Grundkreisradiusabweichung der Evolvente einer Kopfrücknahme
δr _c	Zylinderradiusabweichung
δr_w	Torus-Schlauchradiusabweichung
$\Delta \mathbf{X}$	Translationsvektor mit Komponenten ($\Delta x, \Delta y, \Delta z$)
ϵ	absolute Abweichung von Messwerten q_i zum Stichprobenmittelwert \bar{q}
ϵ_a	Schwellwert der maximalen Parameteränderung als Abbruchkriterium
	der iterativen Approximation
ϵ_Q	Schwellwert der Änderung der Norm der Abstandsgleichungen als Ab-
	bruchkriterium der iterativen Approximation
γ	Schrittweitenparameter des Gauß-Newton Verfahrens
Λ	Berechnungsterm für den Welch F-Test
λ	Lagrange-Faktor der Nebenbedingung
φ	Zentriwinkel eines Kreissegments
φ_b	Polarwinkel des Startpunktes einer Evolvente
φ_{bk}	Polarwinkel des Startpunktes einer Kopfrücknahme-Evolvente
φ_x	Drehwinkel um die x-Achse
φ_y	Drehwinkel um die y-Achse
φ_z	Drehwinkel um die z-Achse
σ	Standardabweichung
θ_i	Winkel des <i>i-</i> ten Fußpunktes
μ	Dämpfungsfaktor des Levenberg-Marquardt Verfahrens
ξ	Wälzwinkel eines Evolventenpunktes

Akronyme

ABS	Anti-Blockiersystem
ANOVA	Analysis of Variances
CAD	Computer Aided Design
FMCW	frequency-modulated continuous-wave
FPGA	Field Programmable Gate Array
GA	Ganzheitliche Approximation
GPS	Geometrische Produktspezifikation
GR	Geometrische Randbedingung
GUM	Guide to the expression of Uncertainty in Measurement
ICP	Iterative Closest Point
KMG	Koordinatenmessgerät
LSL	lower specification limit
MEMS	Mikro-Elektromechanisches System
MKS	Mess-Koordinatensystem
MST	Mikrosystemtechnik
RANSAC	RANdom SAmple Consensus
RMSD	mittlere quadratische Abweichung
SNR	Signal-Rausch-Verhältnis
SVD	Singular Value Decomposition
USL	upper specification limit
WKS	Werkstück-Koordinatensystem