Fortschritte in der Maschinenkonstruktion herausgegeben von D. Bartel und K.-H. Grote

> Institut für Maschinenkonstruktion Otto-von-Guericke-Universität Magdeburg

Dipl.-Ing. (FH), Dipl. Wirt.-Ing. (FH) Sohil Hashemi

Entwicklung und Validierung einer Tribo-Simulation für den Gleitschuh in Axialkolbenmaschinen

November 2020 Lehrstuhl für Maschinenelemente und Tribologie

Entwicklung und Validierung einer Tribo-Simulation für den Gleitschuh in Axialkolbenmaschinen

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von Dipl.-Ing. (FH), Dipl. Wirt.-Ing. (FH) Sohil Hashemi geb. am 10.06.1985 in Herat, Afghanistan, genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Magdeburg

Gutachter:

apl. Prof. Dr.-Ing. habil. Dirk Bartel Prof. Dr.-Ing. Hubert Schwarze

Promotionskolloquium am 14.07.2020

Fortschritte in der Maschinenkonstruktion

Band 1/2020

Said Mojtaba Sohil Hashemi

Entwicklung und Validierung einer Tribo-Simulation für den Gleitschuh in Axialkolbenmaschinen

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Magdeburg, Univ., Diss., 2020

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7647-9 ISSN 1615-7192

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Industriepromovend in der Abteilung Technologieentwicklung - Simulation der Bosch Rexroth AG sowie in Zusammenarbeit mit dem Lehrstuhl für Maschinenelemente und Tribologie der Ottovon-Guericke-Universität Magdeburg.

Mein besonderer Dank gilt Herrn apl. Prof. Dr.-Ing. habil. D. Bartel, Lehrstuhl für Maschinenelemente und Tribologie, für die wissenschaftliche Betreuung, das aufgebrachte Interesse sowie die stets große Unterstützung bei der Erstellung dieser Arbeit. Einer erneuten Promotion am Lehrstuhl würde ich jederzeit zustimmen.

Bei Herrn Prof. Dr.-Ing. H. Schwarze, Leiter des Instituts für Tribologie und Energiewandlungsmaschinen an der Technischen Universität Clausthal, bedanke ich mich für die freundliche Übernahme des Zweitgutachtens. Ebenfalls sei Herrn Jun.-Prof. Dr.-Ing. E. Woschke für die Übernahme des Vorsitzes der Prüfungskommission gedankt.

Herrn Dr.-Ing. L. Bobach, wiss. Mitarbeiter am Lehrstuhl für Maschinenelemente und Tribologie, danke ich für zahlreiche Fachgespräche bzgl. Tribologie und Numerik.

Meinem ehemaligen Abteilungsleiter Herrn Dipl.-Ing. B. Adler danke ich für die Möglichkeit zur Industriepromotion. Mein Dank gilt Herrn Dr.-Ing. A. Kroker und Herrn Dipl.-Ing. H. Friedrich für die Betreuung meiner Arbeit. Herrn Dr.-Ing. A. Kroker danke ich für zahlreiche Fachgespräche bzgl. der Strukturmechanik. Die intensiven Fachgespräche mit Herrn Dipl.-Ing. H. Friedrich bzgl. der Pumpenkonstruktion trugen maßgeblich zum Erfolg der Prüfpumpe bei. An dieser Stelle sei gleichzeitig den Herren Dr.-Ing. D. Breuer und Dipl.-Ing. K. Bauckhage für die durchgeführten Auswirkungsanalysen gedankt. Frau A. Hellstern danke ich für die Erstellung der Zeichnungen. Herrn M. Kaiser sei stellvertretend für alle studentischen Mitarbeitern gedankt.

Meinen Eltern bin ich sehr verbunden, dass Sie mich nach besten Kräften gefördert haben. Meiner Frau Seonhwa danke ich für ihr Verständnis sowie die notwendigen Ablenkungen. Meiner Familie ist die vorliegende Arbeit gewidmet.

Düsseldorf, im Februar 2020

Sohil Hashemi

Kurzfassung

Der Gleitschuh in Schrägscheiben-Axialkolbenmaschinen ist ein hybrides kippbewegliches Axialgleitlager unter instationärer Belastung. Die Gestaltung des Gleitschuhs beeinflusst den hydraulisch-mechanischen Wirkungsgrad der Maschine. In der vorliegenden Arbeit wird eine thermoelastohydrodynamische Mehrkörpersimulation des Gleitschuhs entwickelt. Zudem wird eine Axialkolbenmaschine aufgebaut, die eine Reibkraftmessung zwischen einem Gleitschuh und der Schwenkwiege erlaubt. Es erfolgt die Gegenüberstellung von Messung und Simulation.

Die Bewegungsdifferentialgleichungen des Kolben-Gleitschuhs werden über den Lagrange'schen Formalismus hergeleitet. Die Schmierspaltreaktion wird über die generalisierte Reynolds'sche Differentialgleichung gekoppelt mit der Energiegleichung und der Fourier'schen Wärmeleitungsgleichung berechnet. Die rheologischen Eigenschaften des Schmierstoffs werden über Messdaten bereitgestellt. Die Einflüsse der Oberflächentopographien auf die Hydrodynamik werden mittels Flussfaktoren und Rauheitskontakte über die integrale Festkörperkontaktdruckkurve für real vermessene Oberflächen berücksichtigt. Die Mehrkörperdynamik ist über eine adaptive Zeitschrittweitensteuerung mit der Thermoelastohydrodynamik gekoppelt.

Für die Validierung der Simulationsergebnisse wird eine Zweikreis-Axialkolbenpumpe mit gemeinsamen Arbeitsanschlüssen und steuerbarer Zylinderentlastung aufgebaut. Die Axialkolbenpumpe verfügt über einen Kolben-Gleitschuh auf dem inneren und 23 Kolben-Gleitschuhen auf dem äußeren Teilkreis. Die Reibkraft zwischen dem inneren Gleitschuh und der inneren Schwenkwiege wird über Piezo-Kraftsensoren gemessen. Innerhalb der experimentellen Arbeit werden vier Gleitschuhvarianten in je drei Betriebspunkten untersucht.

Im Anschluss werden zwei Betriebspunkte mit dem entwickelten Simulationsmodell nachgerechnet. Eine Gegenüberstellung der Messung mit der Simulation zeigt eine sehr gute qualitative und quantitative Übereinstimmung. Es werden Empfehlungen für weitere Forschungsthemen auf Grundlage der vorgestellten Ergebnisse abgeleitet.

Inhaltsverzeichnis

	Non	omenklatur		
1	Ein	leitung		
	1.1	Proble	emstellung	1
	1.2	Stand	der Forschung	7
		1.2.1	Tribo-Simulation	7
		1.2.2	Untersuchungen des kippbeweglichen Axialgleitlagers $\ .\ .\ .$.	15
		1.2.3	Experimentelle Untersuchungen von Gleitschuhen in	
			Axialkolbenmaschinen	18
	1.3	Ziel u	nd Inhalt der Arbeit	34
2	Gru	ndlage	en des Simulationsmodells	37
	2.1	Mehrk	örperdynamik	39
		2.1.1	Triebwerkskinematik und -kinetik	39
		2.1.2	Kinematik des Kolben-Gleitschuhs	43
	2.2	Therm	no-Elastohydrodynamik	54
		2.2.1	Strukturmechanik	54
		2.2.2	Elastohydrodynamik	64
		2.2.3	Temperatur verteilung im Schmierstoff und den Festkörpern $.\ .$.	68
		2.2.4	Rheologische Eigenschaften des Schmierstoffs	70
	2.3	Tragk	raft und Reibung	74
		2.3.1	Integraler Festkörperkontaktdruck	75
		2.3.2	Mikrohydrodynamik	78
		2.3.3	Tragkraft und Mischreibung am Gleitschuh	82
	2.4	Berech	mungsablauf und Numerik	84
		2.4.1	Adaptive Thermodynamik	87
		2.4.2	Adaptive Zeitschrittweitensteuerung	89

3 Experimentelle Untersuchungen		93		
	3.1	Tribo-	Slipper-Pumpe	93
		3.1.1	Messung der Reibkraft und des Kolbendrucks $\ .\ .\ .\ .$.	101
		3.1.2	Fehlerkompensation der Reibkraftmessung	103
		3.1.3	Funktionalität der Tribo-Slipper-Pumpe	109
3.2 Versuchsprogramm und Durchführung			chsprogramm und Durchführung	112
	3.3	Versue	chsergebnisse	116
4	Ver	gleich	von Simulations- und Versuchsergebnissen	125
	4.1	Nachr	echnung ausgewählter Versuche	125
		4.1.1	Festlegung der Simulationsrandbedingungen	125
		4.1.2	Simulationsergebnisse	131
	4.2	Vergle	ich von Messung und Simulation	138
5	5 Zusammenfassung und Ausblick		141	
Li	terat	urverz	eichnis	145

Nomenklatur

Lateinische Buchstaben

Variable	Bezeichnung	Einheit
A	Fläche	m^2
A_r	reale Kontaktfläche	m^2
$A_{\eta 1}$	Koeffizient der Vogel-Gl.	Pas
$A_{\eta 2}$	Koeffizient der Vogel-Gl.	$^{\circ}C$
$A_{\eta 3}$	Koeffizient der Vogel-Gl.	$^{\circ}C$
$A_{\lambda 1}$	Koeffizient der Gl. 2.80	$\frac{W}{mK}$
$A_{\lambda 2}$	Koeffizient der Gl. 2.80	$\frac{1}{K}$
B_0	Koeffizient der Bode-Gl.	_
B_1	Koeffizient der Bode-Gl.	bar
B_2	Koeffizient der Bode-Gl.	$\frac{1}{K}$
$B_{\lambda 1}$	Koeffizient der Gl. 2.80	$\frac{W}{mK}$
$B_{\lambda 2}$	Koeffizient der Gl. 2.80	_
C	Federsteifigkeit oder Einflusszahlenmatrix	$\frac{N}{m}, \frac{m^3}{N}$
E	Elastizitätsmodul	$\frac{N}{m^2}$
E_1	Koeffizient der Roelands-Gl.	$\frac{mm^2}{N}$
E_2	Koeffizient der Roelands-Gl.	$\frac{1}{\circ C}$
F	Kraft	N
F_0, F_1	Integrale	div.
G_{13}	Integrale	div.
Ι	Trägheitstensor	kgm^2
K	Steifigkeitsmatrix	$\frac{N}{m}$
K^{-1}	Nachgiebigkeitsmatrix	$\frac{m}{N}$
L	Lagrange'sche Funktion	_
M	Drehmoment	Nm

Q^*	generalisierte Lasten	-
R	Teilkreis	m
T	kinetische Energie oder Temperatur	$J, ^{\circ}C$
V	potentielle Energie oder Volumen	J, m^3
\dot{q}	Wärmestromdichte	$\frac{W}{m^2}$
a	Beschleunigung	$\frac{m}{s^2}$
b_{th}	Wärmeeindringzahl	$\frac{J}{m^2 K \sqrt{s}}$
c_{hd}	Verteilkoeffizient der Niederhaltekraft	-
$c_{p,0}$	Koeffizient der Gl. 2.81	$\frac{kJ}{kgK}$
$c_{p,\vartheta 1}$	Koeffizient der Gl. 2.81	$\frac{kJ}{kgK^{\circ}C}$
$c_{p,p1}$	Koeffizient der Gl. 2.81	$\frac{kJ}{kgKbar}$
c_p	spezifische Wärmekapazität bei konstanten Druck	$\frac{J}{kgK}$
c_v	spezifische Wärmekapazität bei konstanten Volumen	$\frac{J}{kgK}$
d	Durchmesser	m
h	Spalthöhe	m
k	Wärmeaufteilungszahl	_
l	Länge	m
m	Masse oder Master-Knoten	-, kg
p	Druck	Pa
p_c	Festkörperkontaktdruck	Pa
p_h	hydrodynamischer Druck	Pa
$p_{c,lim}$	Grenzdruck, Fließdruck	Pa
p_{hs}	hydrostatischer Druck	Pa
q	generalisierte Koordinate	-
r	Ortsvektor oder Radius	m
s	Slave-Knoten	_
t	Zeit	s
u, v, w	Geschwindigkeit in $\varphi\text{-},r\text{-},z\text{-Richtung}$	$\frac{rad}{s}, \frac{m}{s}, \frac{m}{s}$

w	Verschiebung / Verformung	m
x, y, z	Kartesische Koordinaten	m

Griechische Buchstaben

Variable	Bezeichnung	Einheit
Ω	Berechnungsgebiet	-
Φ^{fp}	Schubspannungsfaktor Druck	-
Φ^{fs}	Schubspannungsfaktor Scherung	_
Φ^p	Druckflussfaktor	_
Φ^s	Scherflussfaktor	m
α_n	Koeffizient der Bode-Gl.	$\frac{mm^2}{N}$
α_s	Koeffizient der Bode-Gl.	$\frac{1}{K}$
β	Schwenkwinkel	rad
β_{th}	Wärmeausdehnungskoeffizient	$\frac{1}{K}$
η^*	effektive dynamische Viskosität	$Pa \cdot s$
λ	Wärmeleitfähigkeit	$\frac{W}{m \cdot K}$
μ	Reibkoeffizient	_
ν	Querkontraktionszahl	_
ω	Winkelgeschwindigkeit	$\frac{rad}{s}$
ω_d	Winkelgeschwindigkeit des Triebwerks	$\frac{rad}{s}$
ρ	Dichte	$rac{kg}{m^3}$
ρ_s	Koeffizient der Bode-Gl.	$\frac{kg}{m^3}$
τ	Schubspannung	Pa
$ au_0$	Grenzschubspannung nach Eyring	$\frac{N}{m^2}$
$ au_e$	resultierende Schubspannung	$\frac{N}{m^2}$
θ	Spaltfüllungsgrad	_
φ,r,z	zylindrische Koordinaten	rad, m, m
φ_d	Drehwinkel des Triebwerks	rad

ϑ Temperatur

Häufig verwendete Indizes

/	Kolben-Koordinaten
//	Gleitschuh-Koordinaten
A, B	Kontaktpunkt
CG	Schwerpunkt
D	Dämpfer
E	Einheitslast
G	globale Koordinaten
HD	hydrodynamisches Gebiet
HS	hydrostatisches Gebiet
Reak	Reaktion
с	Zentrifugal oder Festkörperkontakt
cav	Kavitation
con	Kontur
cr	kritisch
cyl	zylindrisch
d	Triebwerk
def	deformiert
el	elastisch
f	Reibung
fc	Festkörperreibung
fh	Fluidreibung
gas	Gas, Luft
ges	Gesamt
grav	Gravitation
h	hydrodynamisch

hd	Niederhaltevorrichtung / Rückzugplatte
hs	hydrostatisch
i	Trägheit
j	Gelenk
liq	Fluüssigkeit
m	Master Knoten
mix	misch (mixture)
p	Kolben
pl	plastisch
pos	positiv
red	reduzierd
res	resultierend
rig	starr
s	Slave Knoten or Gleitschuh
solid	Festkörper
sph	spherisch
sum	Summe
sw	Schwenkwiege
th	thermisch

Abkürzungen

AFM	Average Flow Model
BP	Betriebspunkt
CFD	Computational Fluid Dynamics
DMS	Dehnungsmessstreifen
EHD	Elastohydrodynamik
FDM	Finite Differenzen Methode
FEM	Finite Elemente Methode

- FVM Finite Volumen Methode
- HD Hydrodynamik
- MKS Mehrkörpersystem
- SOR Successive Over-Relaxation
- $TEHD\;$ Thermo-Elastohydrodynamik