

Felix Hähn

technische

Modellierung und Kompensation der Bahnabdrängung bei der spanenden Bearbeitung mit Industrierobotern

Schriftenreihe des PTW "Innovation Fertigungstechnik"

Herausgeber Prof. Dr.-Ing. Eberhard Abele Prof. Dr.-Ing. Joachim Metternich Prof. Dr.-Ing. Matthias Weigold

Modellierung und Kompensation der Bahnabdrängung bei der spanenden Bearbeitung mit Industrierobotern

Vom Fachbereich Maschinenbau

an der Technischen Universität Darmstadt

zur

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigt

Dissertation

vorgelegt von

Felix Charles Hähn, M.Sc.

aus Koblenz

Berichterstatter:	Prof. DrIng. Eberhard Abele
Mitberichterstatter:	Prof. DrIng. Stephan Rinderknecht
Tag der Einreichung:	17. Juni 2020
Tag der mündlichen Prüfung:	03. November 2020

Darmstadt 2020 D17

Schriftenreihe des PTW: "Innovation Fertigungstechnik"

Felix Hähn

Modellierung und Kompensation der Bahnabdrängung bei der spanenden Bearbeitung mit Industrierobotern

D 17 (Diss. TU Darmstadt)

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2020

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7770-4 ISSN 1864-2179

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

VORWORT DES HERAUSGEBERS

Industrieroboter übernehmen in der industriellen Fertigung immer mehr Aufgaben, die zuvor von Spezialmaschinen oder in Handarbeit durchgeführt wurden. Die Haupteinsatzfelder liegen hierbei in der Handhabung, dem Schweißen und der Montage. Im Bereich der spanenden Bearbeitung ist das Einsatzfeld des Industrieroboters hingegen limitiert, da aktuelle Robotersysteme die notwendigen Genauigkeitsanforderungen zu Gunsten geringer Investitionskosten nicht erfüllen. Eine Haupteinflussgröße auf die Arbeitsgenauigkeit von Industrierobotern ist auf Grund der wirkenden Prozesskräfte die Nachgiebigkeit und die daraus resultierende Abdrängung des Roboterarms.

Die vorliegende Arbeit greift deshalb die Fragestellung auf, wie die Genauigkeit eines Industrieroboters bei der spanenden Bearbeitung gesteigert werden kann, um Zerspanaufgaben, die bisher auf Grund ihres Anforderungsprofils von CNC-Maschinen durchgeführt werden müssen, zukünftig roboterbasiert zu bearbeiten. Hierzu wird ein Nachgiebigkeitsmodell für Industrieroboter weiterentwickelt und parametrisiert. Das Modell wird verwendet, um prozessparallel Korrekturwerte zur Kompensation der Bahnabdrängung zu generieren. Um die verzögerte Reaktionsfähigkeit des Systems zu steigern, die bisherige Lösungen zur prozessparallelen Kompensation aufweisen, wird ein hybrider Ansatz aus gemessenen und abgeschätzten Prozesskräften verfolgt. Es wird in Zerspanversuchen gezeigt, dass die Arbeitsgenauigkeit des Industrieroboters signifikant gesteigert werden kann.

Herstellern und Anwendern wird ein System zur Verfügung gestellt, das mit wesentlich geringeren Investitionskosten im Vergleich zu Portalmaschinen die Bearbeitung von großen Werkzeugen und Strukturelementen mit einer Arbeitsgenauigkeit im Submillimeterbereich ermöglicht.

Darmstadt, im November 2020

Prof. Dr.-Ing. Eberhard Abele

VORWORT DES AUTORS

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) der Technischen Universität Darmstadt.

Herrn Prof. Dr.-Ing. Eberhard Abele danke ich für die wissenschaftliche Betreuung und Diskussion der Arbeit. Auch Herrn Prof. Dr.-Ing. Stephan Rinderknecht gilt mein Dank für die bereitwillige Übernahme des Korreferats und die fachlichen Anregungen.

Ich möchte mich herzlich bei meinen Kolleginnen und Kollegen, insbesondere der Forschungsgruppe Werkzeugmaschinen und Industrieroboter, für die fachlichen Diskussionen, Anregungen und Ratschläge bedanken. Es war eine großartige Zeit am Institut, an die ich mich gerne erinnern werde. Besonderer Dank gilt meinen Bürokolleginnen und kollegen Kaveh Haddadian, Christian Baier, Stephan Bay und Cornelia Tepper. Sie wissen genau, welches Kopfzerbrechen unser Roboter bereiten kann.

Den Mitarbeiterinnen und Mitarbeitern des Instituts danke ich für die stete Unterstützung bei der täglichen Arbeit. Angefangen beim Support, über die Buchhaltung hin zur IT, der Mechanischen Werkstatt und Elektronikwerkstatt.

Des Weiteren möchte ich mich bei den zahlreichen Studienarbeitern, Bacheloranden, Masteranden und studentischen Hilfskräften, die ich während meiner Zeit am Institut betreuen durfte, bedanken. Ohne die Unterstützung wäre diese Arbeit in vorliegenden Umfang nur schwer möglich gewesen. Ein besonderer Dank gilt hierbei Jonathan Burmester, der in der Endphase meiner Dissertation in vielfältiger Weise zum Gelingen der Arbeit beigetragen hat.

Mein größter und herzlichster Dank gilt meiner Familie. Meinen Eltern, die mich in meinem beruflichen Werdegang uneingeschränkt unterstützt und mir alle Freiheiten gelassen haben und meiner Frau Marlene. Ohne deine Unterstützung, deine Hilfe beim Korrekturlesen der Arbeit und insbesondere den Verzicht von dir an vielen Wochenenden und Abenden wäre diese Arbeit so nicht möglich gewesen.

Darmstadt, im Mai 2020

Felix Hähn

V	orwort des Herausgebers		
V	orwort des Autors		
In	haltsverzeichnis	I	
A	bbildungsverzeichnis	III	
Та	abellenverzeichnis	VII	
A	bkürzungen und Formelzeichen	IX	
1	Einleitung und Motivation		
2	Grundlagen und Stand der Erkenntnisse	5	
	2.1 Zerspanen mit Industrierobotern	5	
	2.1.1 Aufbau von Zerspanungsrobotern	7	
	2.1.2 Genauigkeitskenngrößen von Robotern	9	
	2.1.3 Einflussgrößen auf die Positionier- und Bahngenauigkeit Industrierobotern	von 11	
	2.1.4 Lösungsansätze zur Steigerung der Absolutgenauigkeit Industrierobotern in der Zerspanung	von 13	
	2.2 Modellierung von Industrierobotern	24	
	2.2.1 Grundlagen der Koordinaten- und Vorwärtstransformation	24	
	2.2.2 Modellierung von elastischen Roboterstrukturen	26	
	2.2.3 Parameteridentifikation von Steifigkeiten für Robotermodelle	29	
	2.3 Fazit zum Stand der Erkenntnisse	31	
3	Problemstellung, Zielsetzung und Aufbau	33	
	3.1 Problemstellung	33	
	3.2 Zielsetzung	34	
	3.3 Aufbau der Arbeit	35	
4	Versuchs- und Messtechnik	37	
	4.1.1 Roboterzelle und Steuerungstechnik	37	
	4.1.2 Abstands- und Positionssensorik	39	
	4.1.3 Versuchswerkstück und -werkzeug	40	
5	Voruntersuchungen	43	
	5.1 Ermittlung der Prozesskräfte	43	

	5.1.1 Messkonzept	43			
	5.1.2 Signalverarbeitung				
	5.1.3 Konditionierung des Kraftsignals				
	5.1.4 Validierung der Kraftmessung	51			
	5.2 Genauigkeitsuntersuchungen	52			
5.3 Steifigkeitsuntersuchungen					
5.4 Bearbeitungskräfte und -ergebnis bei der Zerspanung des Versuchswerks					
	5.5 Fazit der Voruntersuchungen	59			
6	Auswahl und Weiterentwicklung eines Nachgiebigkeitsmodells	61			
	6.1 Auswahl des Nachgiebigkeitsmodells	61			
	6.2 Erweiterung und Aufbau des Modells	62			
	6.3 Ermittlung der Nachgiebigkeiten	66			
	6.3.1 Messaufbau	66			
6.3.2 Messdatenauswertung					
6.3.3 Experimentelle Ermittlung der Steifigkeitskennwerte des Industrier					
		77			
	6.4 Validierung des Nachgiebigkeitsmodells	80			
7	Hybride Abdrängungskompensation	85			
	7.1 Systemübersicht des Grundkonzepts	85			
	7.1.1 Projektion des Korrekturwertes	86			
	7.1.2 Kartesische und achsspezifische Korrekturwertübergabe	87			
	7.1.3 Regler für Korrekturwerte	88			
	7.2 Konzept der hybriden Kompensation mittels Kraftvorsteuerung	102			
	7.3 Validierung der entwickelten Nachgiebigkeitskompensation	105			
8	Folgerungen für die Praxis	112			
9	Zusammenfassung und Ausblick	115			
1(0 Literaturverzeichnis	119			
A	nhang	131			
St	tudentische Arbeiten	135			
Le	ebenslauf	137			

ABBILDUNGSVERZEICHNIS

Abbildung 1: Vor- und Nachteile sowie Anwendungsbeispiele des Industrieroboters	in
der Zerspanung	1
Abbildung 2: Ziele und Entwicklungsfelder zum Einsatz der roboterbasierten	_
Bearbeitung im Presswerkzeugbau	2
Abbildung 3: Abrängung des Roboters auf Grund einer Prozesskraft F _P (links) und	
Ausschnitt aus einer Presswerkzeugprobegeometrie mit Konturverletzung (rech	1ts) 2
Abbildung 4: Anwendungsbeispiele für das Zerspanen mit Industrierobotern	5
Abbildung 5: Komponenten und Achssysteme (weiß) eines Knickarmroboters	8
Abbildung 6: Positions(absolut)- und Positionswiederholgenauigkeit nach ISO 9283	-10
Abbildung 7: Pose(absolut)genauigkeit und Posewiederholgenauigkeit nach [35]	-10
Abbildung 8: Bahn-Genauigkeit und Bahn-Wiederholgenauigkeit für eine Sollbahn	
nach ISO 9283	-11
Abbildung 9: Stäubli RX 170 hsm (links) und ROBMILL CNC PLUS der Firma Fill	
GmbH [44]	-14
Abbildung 10: iMS Messsystem (links) [57] und Wiest Laserlab (rechts) [Quelle:	
Wiest-AG.de]	-16
Abbildung 11: Offline Bahnkorrektur zur Abdrängungskompensation [16]	-17
Abbildung 12: Konzept der positionsgeregelten Ausgleichsaktorik [98]	-20
Abbildung 13: Abtriebsseitige Encoder und Vergleichsmessung mit einem Lasertrach	ker
zwischen einem Standardsystem und der Second Encoder Technologie [99]	-21
Abbildung 14: Prinzip der Echtzeit Nachgiebigkeitskompensation nach [109]	-22
Abbildung 15: Schematische Darstellung der Vorwärts- und Rückwärtstransformatio	n
nach [116]	-24
Abbildung 16: Varianten der Elastizitätsmodellierung einer Achse	-28
Abbildung 17: Bestimmung der Drehsteifigkeit von Achse 2 [16]	-31
Abbildung 18: Abgedrängte Fräsbahn und Vorschubnormalkraft bei der Zerspanung	
von Gusseisen mit Kugelgraphit EN JS2070 mit einem sechsschneidigen	
Schaftfräser (D = 10 mm)	-33
Abbildung 19: Anwendungsgebiete und Schnittmengen für Bearbeitungsaufgaben na	.ch
[63] vor und nach genauigkeitssteigernden Maßnahmen	-34
Abbildung 20: Grobstruktur der prozessparallelen Nachgiebigkeitskompensation	-35
Abbildung 21: Aufbau der Arbeit	-35
Abbildung 22: Verwendete Roboterzelle für Zerspanversuche	-37
Abbildung 23: Hard- und Software des Systems	- 38
Abbildung 24: Bestimmung des Werkstuck-Koordinatensystems mit Messtaster 1C6	0
(links) und Ermittlung der Werkzeuglange mit Werkzeugvermessungssystem	20
Abbildung 25. Magazutan Tar antaTOP LIE 1080 dar Eines Dreuslander Carbil	- 39
(links) and Scennyorgeng (reality)	40
Abbildung 26: Vorsuchsworkstück aus Aluminium AW 2017A	-40
Abbildung 27: Vollbartmetallfräser 46116010TRRD21 der Firma Ingersoll Werkzeur	
GmbH	50
Abbildung 28: Mögliche Messstellen zur Prozesskraftermittlung	-43
Abbildung 29: Einbaulage des ATI Omega 160 Kraft-Momenten-Sensors	-45
recentang 27. Emounage des riff onlega roo right momenten bensors	

Abbildung 30: Ablauf des ersten Schrittes der Offsetkompensation des Kraft-
Momenten-Sensors46
Abbildung 31: Ablauf des zweiten Schrittes der Offsetkompensation46
Abbildung 32: Koordinatensysteme bei der Bestimmung der Prozesskraft48
Abbildung 33: Freikörperbild der Komponenten: Sensor, Spindelhalterung inkl. Spindel
und Werkstück49
Abbildung 34: Signalkonditionierung des Kraftsignals zur
Nachgiebigkeitskompensation50
Abbildung 35: Verbleibender Kraftoffset nach Schritt 1 und 2 der Offsetkalibrierung
des Kraftsensors ATI Omega 16051
Abbildung 36: Messwerte des Kraft-Momenten-Sensors ATI Omega 160 am Flansch
und einem Dynamometer des Typs Kistler 9255A unter dem Werkstück als
Referenzevetem (grau)52
Abbildung 37: Pröfbahn nach DIN ISO 928353
Abbildung 38: Abweichung zwischen Soll und let Bahn bei einer Bahngeschwindigkeit
von 40 mm/s
Voli 40 mm/s
Abbildung 59. Kanesische Nachgiebigkeiten des KUKA KK 50055
Abbildung 40: Steifigkeitsvermessung des Endemektors (links onne/ rechts mit
Berucksichtigung des Werkzeugs)56
Abbildung 41: Bearbeitung des Versuchswerkstucks aus AW-201/A5/
Abbildung 42: Soll-Ist-Vergleich des Versuchswerkstücks in der Software GOM
Inspect sowie Scan des Fräseraustritts58
Abbildung 43: Richtungen und Beträge der wirkenden Prozesskräfte59
Abbildung 44: Transformation mit 5 Parametern62
Abbildung 45: Koordinatensysteme des Nachgiebigkeitsmodells für die spanende
Bearbeitung mit Industrierobotern64
Abbildung 46: Aufbau des Nachgiebigkeitsmesssystems66
Abbildung 47: Roboter mit Prüfkörpern (W _{0a} – W ₉)68
Abbildung 48: Sensorpaket auf Prüfwürfel mit Positionierhilfe68
Abbildung 49: Messpunkte auf einem Messwürfel69
Abbildung 50: Schritte zur Bestimmung der Würfel-Koordinatensysteme70
Abbildung 51: Bestimmung des Robroot-Koordinatensystems in der Roboterbasis72
Abbildung 52: Koordinatensysteme des Nachgiebigkeitsmodells bei der
Parameterbestimmung73
Abbildung 53: Vereinfachte Darstellung eines Robotergelenks vor und nach der
Belastung74
Abbildung 54: Vereinfachte Darstellung eines Strukturteils vor und nach der Belastung
76
Abbildung 55: Eingemessene Koordinatensysteme77
Abbildung 56: Beispielhafte Belastungssituationen zur Kennwertermittlung78
Abbildung 57: Darstellung des Achskoordinatensystems G1u und G1h * von Achse A1
mit 100-fach vergrößerter Verdrehung79
Abhildung 58: Mess- und Simulationswerte des Gesamtmodells in v-Richtung bei
Relacting mit 750 N 91
Abbildung 50: Mass. und Simulationeuvorte des Cosemtmodelle in y Dichtung hei
Autonuung 37. Mess- und Simulationswerte des Gesamunodens in y-Kichlung dei Delecture mit 750 N
Detastung IIII / JU N
Aboliculing ob. Mess- und Simulationswerte des Gesamtmodens in Z-Kichtung bei
Belastung mit / 50 N82

Abbildung 61: Mess- und Simulationswerte des Gesamtmodells in x-Richtung bei
Belastung mit 250 N83
Abbildung 62: Mess- und Simulationswerte des Gesamtmodells in y-Richtung bei
Belastung mit 250 N83
Abbildung 63: Mess- und Simulationswerte des Gesamtmodells in z-Richtung bei
Belastung mit 250 N84
Abbildung 64: Grundkonzept zur Nachgiebigkeitskompensation85
Abbildung 65: Projektion des Korrekturvektors Δr in die Normalenebene des
Vorschubs86
Abbildung 66: Varianten der Korrekturwertübergabe an die RSI-Schnittstelle88
Abbildung 67: Ausschnitt der Signalkette zur Übergabe des Korrekturwertes an die
Robotersteuerung mit Vorfilter (oben) und Reglerstruktur (unten)89
Abbildung 68: Sprungantwort der Filter90
Abbildung 69: Bewegungsverhalten unter Verwendung der Vorfilter auf einen
gefilterten Sprung von 1 mm in v-Richtung bei einer Bewegung in x-Richtung mit
25 mm/s im Welt-Koordinatensystem90
Abbildung 70: Signalverlauf innerhalb der RSI-Schnittstelle zur Positionskorrektur
einer kartesischen Achse am Beispiel eines PID-Glieds91
Abbildung 71: Bewegungsverhalten unter Verwendung eines L-Reglers mit $TI = 0.075$ s
auf einen Sprung von 1 mm in v-Richtung bei einer Bewegung in v-Richtung mit
25 mm/s im Welt-Koordinatensystem92
Abbildung 72: Bewegungsverhalten unter Verwendung ausgewählter PID-Regler auf
einen Sprung von 1 mm in v-Richtung bei einer Bewegung in v-Richtung mit
25 mm/s im Welt Koordinatensystem
Abbildung 73: Versuche der Regelungen beim Fräseraustritt
Abbildung 74: Einfluss der Vorschubgeschwindigkeit auf den Eröseraustritt
(Material = AW 2007 D = 16 mm $a = 8$ mm $n = 12000 \text{ 1/min}$) 05
(Matchai – Aw-2007, D – 10 min, a_p – 8 min, ii – 15.000 1/min)
Abbituting 75. Signarvertaut innernato del KSI-Schnittsterie zui Achskorrektur einer
Abbildung 76: Eingengegrößen des Debetermedelle
Abbildung 70. Eingangsgroßen des Kobolennodens98
Additional //: vernalten von Achse i auf einen Sollsprung von 0,02° bei einem
Massentragnetismoment der Achse von 161 m²kg (links) und 1926 m²kg (rechts)
Additional for the systems of $11 = 0, 1$ s and enter spring vol $0, 02^{-1}$ in
Achse i bei Achsstellungen mit vergleichbarem Massentragneitsmoment 100
Abbildung 79: Sprungtest an Achse 3 in der Achsstellung A ₁ : 0° A ₂ : -90° A ₃ : 0° (links)
45° (mitte) 90° (rechts) A ₄ : 0° A ₅ : 90° A ₆ : 180° bei einem 11 von 0,045 s 102
Abbildung 80: Schematisches Konzept der hybriden Nachgiebigkeitskompensation- 103
Abbildung 81: Beispielhafte Kraftsignale beim hybrid kompensierten Fräsen einer Nut
104
Abbildung 82: Fräseraustritt beim Nutenfräsen in y-Richtung des Welt
Koordinatensystems an Position 1 und 2 bei einer Vorsteuerung mit 48 ms
Zeitversatz104
Abbildung 83: Bearbeitungspose und Steifigkeitsellipsoid des TCP an Position 1 (links)
mit x = 1405 mm, y = -90 mm, z = 940 mm und Position 2 mit x = 1703 mm,
y = -1703 mm, z = 610 mm - 106
Abbildung 84: Soll-Ist-Vergleich des Versuchswerkstücks bei einer unkompensierten
Bearbeitung an Position 2106

Abbildung 85: Soll-Ist-Vergleich des Versuchswerkstücks bei einer kartesisch			
kompensierten Bearbeitung an Position 1 mit den Reglerparametern $KR = 0.075$,			
TN = 0,0045 s, TV = 0,006 s107			
Abbildung 86: Soll-Ist-Vergleich des Versuchswerkstücks bei einer kartesisch			
kompensierten Bearbeitung an Position 2 mit den Reglerparametern $KR = 0.055$,			
TN = 0,0035 s, TV = 0,0065 s 107			
Abbildung 87: Soll-Ist-Vergleich des Versuchswerkstücks bei einer achsspezifisch			
kompensierten Bearbeitung an Position 1 mit den Reglerparametern A1:			
KR = 0,079, $TN = 0,004$ s, $TV = 0,007$ s; A2: $TI = 0,045$ s; A3: $TI = 0,045$ s; A4:			
TI = 0,04 s; A5: TI = 0,04 s; A6: TI = 0,045 s 108			
Abbildung 88: Soll-Ist-Vergleich des Versuchswerkstücks bei einer achsspezifisch			
kompensierten Bearbeitung an Position 2 mit den Reglerparametern A1:			
KR = 0,05, TN = 0,003 s, TV = 0,007 s; A2: TI = 0,07 s; A3: TI = 0,05 s; A4:			
TI = 0,04 s; A5: TI = 0,04 s; A6: TI = 0,045 s 109			
Abbildung 89: Soll-Ist-Vergleich des Versuchswerkstücks bei einer kartesisch			
kompensierten Bearbeitung mit Vorsteuerung an Position 1 110			
Abbildung 90: Soll-Ist-Vergleich des Versuchswerkstücks bei der achsspezifisch			
kompensierten Bearbeitung mit Vorsteuerung an Position 1 110			
Abbildung 91: Positionen bei den Validierungsversuchen in Orientierung 0° (Position 1:			
x = 2084 mm, y = -97 mm, z = 1524 mm; Position 2: x = 1091 mm, y = 454 mm,			
z = 1884 mm; Position 3: $x = 1337$ mm, $y = -538$ mm, $z = 1098$ mm; Position 4:			
x = 1595 mm, y = -18 mm, z = 1099 mm) 131			
Abbildung 92: Weitere Orientierungen am Beispiel von Position 4 131			
Abbildung 93: Schwingverhalten verschiedener PT ₁ -Steuerglieder auf einen Sprung von			
1 mm in y-Richtung bei einer Bewegung in x-Richtung mit 25 mm/s im Welt-			
Koordinatensystem 132			
Abbildung 94: Schwingverhalten verschiedener I-Regler auf einen Sprung von 1 mm in			
y-Richtung bei einer Bewegung in x-Richtung mit 25 mm/s im Welt-			
Koordinatensystem 133			
Abbildung 95: Auschnitt des Roboterprogramms in der Programmiersprache KRL zur			
Vorsteuerung 134			

TABELLENVERZEICHNIS

Tabelle 1: Vor- und Nachteile der Bearbeitungsprinzipien nach [12] und [16] 6
Tabelle 2: Typische Roboterkinematiken nach [30]7
Tabelle 3: Kenngrößen für Industrieroboter nach VDI 28619
Tabelle 4: Systematische und stochastische Einflussgrößen auf die Positionier- und
Bahngenauigkeit [12]12
Tabelle 5: Herstellerspezifische Schnittstellen zur Korrekturwertübergabe19
Tabelle 6: Transformationsvorschriften für Roboterkinematiken26
Tabelle 7: ATI Omega 160 SI-2500-400 [143]38
Tabelle 8: Bewertung von Kraftmessstellen und -methoden44
Tabelle 9: Positionswiederholgenauigkeit des KUKA KR 300 R2500 ultra53
Tabelle 10: Bahngenauigkeit des KUKA KR 300 R2500 ultra54
Tabelle 11: Ermittelte Steifigleitswerte des Endeffektors57
Tabelle 12: Eignung verschiedener Modellierungsansätze für eine prozessparallele
Nachgiebigkeitsberechnung62
Tabelle 13: Transformationsparameter des KUKA KR 300 R250064
Tabelle 14: Achsstellungen und Belastungen zur Kennwertermittlung78
Tabelle 15: Ermittelte Steifigkeitskennwerte der Achsen und Strukturelemente des KR
300 R250079
Tabelle 16: Vergleich zwischen Messwerten und Simulation an Würfel 9 in der
Achsstellung A ₁ : 0°, A ₂ : -90°, A ₃ : 90°, A ₄ : 180°, A ₅ : 0°, A ₆ : 0° mit je 1000 N und
500 N in z-Richtung80
Tabelle 17: Vergleich zwischen Messwerten und Simulation an Würfel 9 in der
Achsstellung A ₁ : 0°, A ₂ : -90°, A ₃ : 90°, A ₄ : 180°, A ₅ : 0°, A ₆ : 0° mit je 1000 N und
500 N in y-Richtung80
Tabelle 18: Abweichungen zwischen Mess- und Simulationswerten bei einer Belastung
mit 750 N82
Tabelle 19: Abweichungen zwischen Mess- und Simulationswerten bei einer Belastung
mit 250 N84
Tabelle 20: Reglerparameter der Achsen 4 bis 6 bei der achsspezifischen
Korrekturwertübergabe97

ABKÜRZUNGEN UND FORMELZEICHEN

Abkürzungen		
Kurzzeichen	Begriff	
2D	Zweidimensional	
3D	Dreidimensional	
6D	Sechsdimensional (Position und Orientierung)	
A/D	Analog/Digital	
A1, A6	erste, sechste Achse des Roboters	
AG	Aktiengesellschaft	
ARC	Adaptive Robot Control	
bez.	bezüglich	
bspw.	beispielsweise	
ca.	circa	
CAD	Computer Aided Design	
САМ	Computer Aided Manufacturing	
ССТ	Conservative Congruence Transformation	
CFK	Kohlenstofffaserverstärkter Kunststoff	
CNC	Computerized Numerical Control	
DIN	Deutsche Institut für Normung e. V.	
DMS	Dehnungsmessstreifen	
DPM	Dynamic Path Modification	
EGM	Externally Guided Motion	
EN	Europäischen Normen	
FEM	Finite-Elemente-Methode	
Gi	i-tes (virtuelles) Gelenk	
GFK	Glasfaserverstärkter Kunststoff	
GmbH	Gesellschaft mit beschränkter Haftung	

GPS	Global Positioning System	
HSK	Hohlschaftkegel	
HSM	High-Speed-Machining	
I-Glied/ Regler	Integrierendes Glied / Regler	
IIR	Infinite Impulse Response	
Inc.	Incorporated	
IPO	Input-Processing-Output	
IRC	Industrial Robot Controller	
ISO	Internationale Organisation für Normung	
K _B	Werkstück-Koordinatensystem	
K _F	Flansch-Koordinatensystem der mechanischen Schnittstelle	
KL	Lasertracker-Koordinatensystem	
KOS	Koordinatensystem	
KR	KUKA Robot	
KR C	KUKA Robot Control	
K _R	Roboterfußpunkt-Koordinatensystem	
KRL	KUKA Robot Language	
K _{TCP}	Tool Center Point-Koordinatensystem	
K _W	Welt-Koordinatensystem	
L	Lasertracker	
LED	Leuchtdiode	
LLI	Low-Level-Interface	
Max	Maximum	
Min	Minimum	
MSA	Matrix Structural Analysis	
MXT	Move External	
NC	Numerical Control	
01,,03	Erste,, dritte Orientierung	

P1,,P5	Positionen in DIN ISO 9283 Prüfbahn	
P ₁ ,P ₆	Positionen bei der Würfelvermessung	
PID-Glied/Regler	Proportional, integral und differential Glied	
PT ₁ -Glied/Regler	Verzögerungsglied 1. Ordnung	
PTW	Institut für Produktionsmanagement, Technologie und Werk- zeugmaschinen	
q	Stellgröße	
R	Robroot	
RSI	Roboter-Sensor-Interface	
SD	Standard Deviation (Standardabweichung)	
SE	Second Encoder	
SEN_PREA	Systemvariable zum Austausch von Real-Werten über eine Sen- sorschnittstelle	
SI	Sensorintern	
SPS	speicherprogrammierbare Steuerung	
SSD	Solid-State-Drive	
ТСР	Tool Center Point	
TwinCAT	The Windows Control and Automation Technology	
UDP	User Datagram Protocol	
VDI	Verein Deutscher Ingenieure	
vgl.	vergleiche	
Wi	i-ter Würfel	
W _i ^u	i-ter Würfel im unbelasteten Zustand des Roboters	
W _i ^b	i-ter Würfel im belasteten Zustand des Roboters	
WZM	Werkzeugmaschine	
XML	Extensible Markup Language	

Formelzeichen		
Kurzzeichen	Einheit	Größe
a	mm	Strecke zwischen zwei Gelenken entlang x- Achse
A1,An	° bzw. rad	Winkel der Achse 1,n
AP	mm	Pose(absolut)genauigkeit
a _p	mm	Axiale Zustellung/ Schnitttiefe
AT	mm	Bahn-Genauigkeit
b	mm	Strecke zwischen zwei Gelenken entlang y- Achse
D	mm	Fräserdurchmesser
d	mm	Strecke zwischen zwei Gelenken entlang z- Achse
ē	-	Einheitsvektor
F	N	Kraft
F	N	Kraftvektor
Fc	N	Schnittkraft
F _{cN}	N	Schnittnormalkraft
\vec{F}_i	N	Kraftvektor im i-ten Koordinatensystem
Fp	N	Prozesskraft
<i>F</i> _{<i>TCP</i>} <i>F</i>	N	Kraftvektor im TCP-Koordinatensystem
h	m/N	Nachgiebigkeit
J	-	Jakobi-Matrix
J _{ges}	m²kg	Massenträgheit einer Achse
J _m	m²kg	Massenträgheit eines Massepunktes
k	N/m bzw. Nm/rad	Steifigkeit
К	-	Steifigkeitsmatrix
K _K	-	Kartesische Steifigkeitsmatrix
КМ	Nm	Kippmoment
KR	-	Verstärkungsfaktor eines PID-Reglers

K_{θ}	-	Dreh-Steifigkeitsmatrix
М	Nm	Moment
M _A	Nm	Moment um die z-Achse
M _B	Nm	Moment um die y-Achse
M _C	Nm	Moment um die x-Achse
M _M	Nm	Motormoment
Mw	Nm	Widerstandsmoment
Ø	mm	Durchmesser
q	0	Achswinkel
\vec{q}	-	Einheitsquaternionen
Q	-	Quaternionen-Vektor Paar
r	mm	Positionsvektor
r _b	Mm	Radius des Bohrbildes des Grundgestells
Rot	-	Rotationsmatrix
RP	mm	Pose-Wiederholgenauigkeit
RT	mm	Bahn-Wiederholgenauigkeit
r _{x,y,z}	mm	Komponente des Vektors r
Rz	μm	gemittelte Rautiefe
ť	mm	Ortsvektor des Quaternionen-Vektor Paars
^{x y} T	-	Transformationsmatrix zur Koordinaten- transformation eines Positionsvektors vom Koordinatensystem y in das Koordinatensys- tem x
T_i^{v}	-	i-te Transformationsmatrix der Vorwärtski- nematik
T _i ^e	-	i-te Transformationsmatrix der Eulertrans- formation
T1	s	Zeitkonstante der Integration bei einem I- Regler
TN	s	Zeitkonstante der Integration bei einem PID-Regler
T _R	-	Transformationsmatrix einer Rotation

Trans	-	Translationsmatrix
T _T	-	Transformationsmatrix einer Translation
TV	s	Zeitkonstante der Differenzierung bei einem PID-Regler
T1	S	Zeitkonstante des Verzögerungsglieds bei einem PT ₁ -Regler
\vec{v}	-	Vektor der Vorschubgeschwindigkeit
Vf	mm/s	Vorschubgeschwindigkeit
\vec{v}_n	-	Normierter Vektor der Vorschubgeschwin- digkeit
α	rad	Winkel bei Rotation um x-Achse
β	rad	Winkel bei Rotation um y-Achse
Δ	-	Differenz
Δ1	m	Längenänderung
$\Delta \vec{r}$	mm	Positionskorrekturvektor des Nachgiebig- keitsmodells
$\Delta \phi$	rad	Winkeländerung
Δq	0	Korrekturwert der Achsen
Θ	rad	Winkel bei Rotation um z-Achse
η	-	Zeitkonstante eines Verzögerungsglieds bei einem PT ₂ -Regler
3	-	Zeitkonstante eines Verzögerungsglieds bei einem PT ₂ -Regler
ξ	-	Zeitkonstante des Verzögerungsglieds bei einem PT ₁ -Regler
ώ	rad/s ²	Winkelbeschleunigung