Lehrstuhl für Mechatronik und Elektrische Antriebssysteme Prof. Dr.-Ing. Gerhard Huth

Jiawei He

Hochtourige Antriebskonzepte für Strömungsmaschinen in PM-Synchrontechnik

Kaiserslauterer Beiträge zur Antriebstechnik Band 19

Technische Universität Kaiserslautern Lehrstuhl für Mechatronik und elektrische Antriebssysteme

Hochtourige Antriebskonzepte für Strömungsmaschinen in PM-Synchrontechnik

Vom Fachbereich Elektro- und Informationstechnik der Technische Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation

> M. Sc. Jiawei He geboren in Fujian

Datum der mündlichen Prüfung: 29.06.2020

1. Berichterstatter: Prof. Dr.-Ing. Gerhard Huth

2. Berichterstatter: Prof. Dr.-Ing. Stefan Götz

Prüfungsvorsitzender: Prof. Dr.-Ing. Daniel Görges

Kaiserslauterer Beiträge zur Antriebstechnik

Band 19

Jiawei He

Hochtourige Antriebskonzepte für Strömungsmaschinen in PM-Synchrontechnik

D 386 (Diss. Technische Universität Kaiserslautern)

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kaiserslautern, TU, Diss., 2020

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7642-4 ISSN 1866-5357

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

	0.1	Schrei	bweise der Formelzeichen	vii
	0.2	Symbo	olverzeichnis	vii
1	Ein	nleitung und Problemstellung		
	1.1	Motiv	ation	1
	1.2	Zielset	zung der Arbeit	2
2	Mö	gliche	Konzepte für hochtourige Antriebe	5
	2.1	Geeigi	neter Motortyp	5
	2.2	Feldor	ientiert betriebene PMSM	8
	2.3	Sinuss	trombetrieb	9
	2.4	Möglie	chkeiten der Motorausführung	11
	2.5	Kriter	ien für die Bewertung der Konzepte	15
	2.6	Bewertung der Motorkonzepte		17
		2.6.1	Festlegung auf vier Motorkonzepte	17
		2.6.2	Einsatz von SMC-Materialien für Motorkonzepte mit Luft-	
			spaltwicklung	20
		2.6.3	Weitere Festlegung auf das Grundmotorkonzept $\ . \ . \ . \ .$	26
3	Det	ailausf	ührung des gewählten Motorkonzeptes	28
	3.1	Ständ	eraufbau	28
		3.1.1	Geblechtes Ständerpaket	28
		3.1.2	Neuartiges Ständeraktivteil aus SMC-Materialien	29
		3.1.3	Wicklungssystem	31
	3.2	Läufer	raufbau	37
		3.2.1	Hartmetallhohlwelle	37
		3.2.2	Permanent magnet	38

4	Ana	alytisch	he Modellierung und Simulation	41
	4.1	Model	llansatz und Algorithmus	41
	4.2	Bestin	nmung der Luftspaltinduktion	43
		4.2.1	$Bestimmung \ des \ permanent magnet erregten \ Luft spaltfel-$	
			des	44
		4.2.2	Bestimmung des durch den Ständerstrom erzeugten Luft-	
			spaltfeldes	57
	4.3	Thern	nische Modellierung	60
	4.4	Umric	chterspeisung	65
	4.5	Statio	näres Betriebsverhalten	69
		4.5.1	Ersatzschaltbild und Leistungsbilanz	69
		4.5.2	Berechnung von Strangwiderstand und Drehfeldindukti-	
			vität	70
		4.5.3	Berechnung von EMK und PM-Flussverkettung	72
		4.5.4	Berechnung des Drehmoments	73
		4.5.5	Wirkungsgrad- und Verlustberechnung	74
	4.6	Simul	ationstool	84
5	Ver	gleich	der analytischen Simulation mit der FEM-Berechnu	ıg 88
5	Ver 5.1	_	der analytischen Simulation mit der FEM-Berechnur llagen der FEM-Berechnung	_
5		Grund	der analytischen Simulation mit der FEM-Berechnundlagen der FEM-Berechnung	88
5	5.1	Grund	llagen der FEM-Berechnung	88 90
5	5.1	Grund Model	llagen der FEM-Berechnung	88 90 90
5	5.1	Grund Model 5.2.1	llagen der FEM-Berechnung	88 90 90 91
5	5.1	Grund Model 5.2.1 5.2.2	llagen der FEM-Berechnung	88 90 90 91 93
5	5.1	Grund Model 5.2.1 5.2.2 5.2.3	llagen der FEM-Berechnung	88 90 90 91 93 95
5	5.1	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	llagen der FEM-Berechnung	88 90 90 91 93 95
5	5.1 5.2	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle	dlagen der FEM-Berechnung	88 90 90 91 93 95
5	5.1 5.2	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle	llagen der FEM-Berechnung	88 90 90 91 93 95 97
5	5.1 5.2	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle nung	llagen der FEM-Berechnung	88 90 90 91 93 95 97
5	5.1 5.2 5.3	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle nung 5.3.1 5.3.2	Illagen der FEM-Berechnung	88 90 90 91 93 95 97
	5.1 5.2 5.3	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle nung 5.3.1 5.3.2	dlagen der FEM-Berechnung	88 90 90 91 93 95 97 98 98 99
	5.1 5.2 5.3	Grund Model 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Vergle nung 5.3.1 5.3.2	Allagen der FEM-Berechnung	88 90 90 91 93 95 97 98 98 99 102

	6.2	Optimierte Auslegung von Funktionsmuster $\mathit{FM-A}$ 10	4
	6.3	Funktionsmusterbau	6
		6.3.1 Gewählter Ständeraufbau des 6-nutigen Motorkonzeptes $$ 10	6
		6.3.2 Gewählter Läuferaufbau des 6-nutigen Motorkonzeptes $$. 10	8
		6.3.3 Zusätzlicher Ständeraufbau	0
	6.4	Musterträger	2
7	Ver	suchsaufbau für die technische Erprobung 11	7
	7.1	Aufbau des Prüfstands	7
	7.2	Frequenzumrichter	8
	7.3	Last maschine	9
	7.4	Berechnungsblatt	0
8	Exp	erimentelle Erprobung im direkten Vergleich zur Berech-	
	nun	g 12	1
	8.1	Messprogramm	1
	8.2	Messung der Luftspaltinduktion	1
	8.3	Widerstands- und Induktivitätsmessung	3
8.4 Leistungsmessung			4
	8.5	Auslaufmessung	5
		8.5.1 Bestimmung der Reibungsverluste	5
		8.5.2 Bestimmung der Ummagnetisierungsverluste im Leerlauf 12	6
	8.6	Leerlaufmessung zur Bestimmung der EMK $\dots \dots \dots$	8
8.7 Vermessung der Funktionsmuster im stationären Betrieb			3
		8.7.1 Messung der Motortemperaturen	3
		8.7.2 Ummagnetisierungsverluste im Lastfall	5
		8.7.3 Ermittlung des Drehmoments	5
		8.7.4 Vermessung der S1-Kennlinien	7
		8.7.5 Bestimmung des Wirkungsgrades	0
9	Zus	ammenfassung 14	4
A		14	7
	A.1	Hauptabmessungen des Basismotors	7
	A.2	Die erste Konzeptbewertung	8
	A.3	Die endgültige Konzeptbewertung	1

A.4	Elektrische Leitfähigkeit des Hartmetalls	4
A.5	Motorette	6
A.6	Relative magnetische Permeabilität des verwendeten SMC-Materials 1	59

vi

0.1 Schreibweise der Formelzeichen

Augenblickswerte und Konstante haben keine besondere Kennzeichnung.

Vektoren und Matrizen sind fett geschrieben, wie \mathbf{u}_1 .

Komplexe Größe werden unterstrichen, wie $\underline{i}_{1m}.$

Amplituden von Sinusgrößen erhalten $\hat{}$, wie \hat{B}_p .

Mittelwert erhalten \bar{B} , wie \bar{B} .

0.2 Symbolverzeichnis

Formelzeichen

a	Parallelzweig der Ständerwicklung
b	Induktionsverteilung
b_S	Nutschlitzbreite
B	magnetische Induktion
B_r	magnetische Remanenz
$B \cdot H$	Energieprodukt
d	$\operatorname{Wan}\operatorname{dst} \ddot{\operatorname{arke}}$
D	Durchmesser
H	magnetische Feldstärke, Härte
H_{cB}	magnetische Koerzitivfeldstärke
\underline{I}_1	Strangstrom des einphasigen Ersatzschaltbildes
k_E	Spannungskonstante
k_T	Drehmomentkonstante
K_R	Stromverdrängungskoeffizient des Widerstands
L	Länge, Induktivität
m_1	Strangzahl des Ständers
M_{mech}	Wellendrehmoment
M_i	inneres Drehmoment
n	Motordrehzahl
N_1	Nutzahl des Ständers
p	Polpaarzahl

 $egin{array}{ll} P & & ext{Wirkleistung} \ q & & ext{Lochzahl} \ Q & & ext{Blindleistung} \ r & ext{Radius} \ \end{array}$

R Radius, Widerstand
S Scheinleistung

 T_{max} max. Einsatztemperatur

 T_C Curie-Temperatur

 T_G Glasübergangstemperatur

 T_S Schmelztemperatur

 u_U Strangspannung der Phase U

 u_{UV} verkettete Spannung zwischen Phase U und Phase V

 U_{Nut} Nutumfangslänge U_{ZW} Zwischenkreisspannung

 $\begin{array}{ll} \underline{U}_1 & & \text{Strangspannung des einphasigen Ersatzschaltbildes} \\ \underline{U}_p & & \text{Polradspannung des einphasigen Ersatzschaltbildes} \end{array}$

 V_m magnetisches Spannungspotential

W Spulenweite

 W_1 Windungszahl pro Ständerstrang

 Z_S Strangwindungszahl

 α Strombelag, Wärmeübergangskoeffizient, Temperaturkoeffizient γ mechanischer Drehwinkel zwischen Ständerstrang und Läuferstrang

 δ Eindringtiefe

 δ_{geo} geometrischer Luftspalt

 θ Phasenversatz

 κ elektrische Leitfähigkeit

 λ Luftspaltleitwert, Wärmeleitwert

 μ_0 Vakuumpermeabilität μ_r relative Permeabilität u Drehfeldpolpaarzahl

 ξ Wicklungsfaktor der Ständerwicklung ξ_N Nutschlitzfaktor der Ständerwicklung ξ_S Sehnungsfaktor der Ständerwicklung

 ξ_Z Zonungsfaktor der Ständerwicklung ρ Dichte, elektrischer Widerstand

 σ Streuziffer σ_B Bruchspannung au_p Polteilung

 Ψ_{PM} PM-Flussverkettung

 $\underline{\psi}_{_{1}}$ Flussverkettung des Ständers

 φ Phasenwinkel

 Ω Winkelgeschwindigkeit

Indizes

 $\begin{array}{lll} 0 & & \text{Leerlauf} \\ ab & & \text{abgegeben} \\ AP & & \text{Arbeitspunkt} \\ ASM & & \text{Asynchronmotor} \\ B & & \text{Bandage, Bohrung} \end{array}$

Cu Kupfer

dv doppelt verkettet

DZSP Doppel-Zahnspulenwicklung EMK Elektromotorische Kraft

Fe Eisen

geo Geometrie

GSM Gleichstrommotor

 $\begin{array}{ll} H & \quad \text{Hysterese} \\ h & \quad \text{Haupt} \\ HW & \quad \text{Hohlwelle} \\ L & \quad \text{Last} \\ Lager & \quad \text{Lager} \end{array}$

LPTM Lumped Parameter Thermal Modelling

 $egin{array}{ll} m & & & & & \\ mag & & & & & \\ magnetisch & & & \\ mech & & & & \\ Motor & & & & \\ Motor & & & \\ \end{array}$

N Bemessung, Nut

p Grundfeld-Polpaarzahl

PAM Puls-Amplituden-Modulation

PM Permanent magnet

PMSM permanent magneter regter Synchron motor

PWM Puls-Weiten-Modulation

 $\begin{array}{cc} r & \text{radial, relativ} \\ res & \text{resultierend} \end{array}$

S Spule

SMC weichmagnetische Pulververbundwerkstoffe

St Stirn

 $\begin{array}{ll} SYM & {\rm Synchronmotor} \\ W & {\rm Wicklung} \\ WK & {\rm Wickelkopf} \end{array}$

ZSP Zahnspulenwicklung

ZW Zwischenkreis