

Thermografie zur Qualitätssicherung beim Ultraschallschweißen

Grenzen und Potenziale der passiven Thermografie zur Prozessüberwachung

Christopher Pommer, Eduard Kraus, Benjamin Baudrit, Thomas Hochrein

Bildung & Forschung www.skz.de

Thermografie zur Qualitätssicherung beim Ultraschallschweißen

Grenzen und Potenziale der passiven Thermogafie zur Prozesssüberwachung

SKZ – Forschung und Entwicklung

SKZ – Das Kunststoff-Zentrum (Hrsg.)

Thermografie zur Qualitätssicherung beim Ultraschallschweißen

Grenzen und Potenziale der passiven Thermografie zur Prozessüberwachung

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Die Autoren:

Dipl.-Ing. Christopher Pommer

Dr. Eduard Kraus Dr. Benjamin Baudrit Dr. Thomas Hochrein

Copyright Shaker Verlag 2020

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7469-7 ISSN 2364-754X

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Das IGF-Vorhaben 19563 der Forschungsvereinigung FSKZ e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Die Forschungseinrichtung SKZ-KFE gGmbH dankt dem Bundesministerium für Wirtschaft und Energie (BMWi) und der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) für die Unterstützung bei der Durchführung.

Des Weiteren bedankt sich die SKZ-KFE gGmbH bei dem projektbegleitenden Ausschuss für die rege Teilnahme und dem hilfreichen Input für die Durchführung des Projektes sowie für bereitgestellte Materialien, Maschinen, Equipment und industriellen Bauteilen

Kurzfassung

Zur Bewältigung hoher Stückzahlen werden zum Verbinden von Bauteilen meist Serienschweißverfahren wie das Ultraschallschweißen eingesetzt. Obwohl das Ultraschallschweißen ein sehr verbreitetes und allgemein zuverlässiges Fügeverfahren ist, können dennoch Qualitätsschwankungen auftreten, die nicht durch die Überwachungsparameter der Schweißmaschine erkannt werden.

Die Thermografie bietet hierfür eine neue Möglichkeit, den Ultraschallschweißprozess zu bewerten. Mittels der im Projekt festgelegten Auswertungsmethoden konnten vergleichbare Aussagen bezüglich des Schweißprozesses getroffen werden, wie mit den Maschinenüberwachungsparametern Schweißenergie und -zeit. Dies bedeutet, dass eine Bewertung des Ultraschallschweißprozesses mittels Thermografie generell geeignet und aussagefähig ist. Der große Vorteil der Thermografie liegt jedoch in der bildhaften Darstellung, der Vielzahl an unterschiedlichen Auswertungsmöglichkeiten sowie der schnellen industriellen Umsetzbarkeit. So können Prozesseinflüsse visuell bewertet und Unregelmäßigkeiten am Bauteil lokal zugeordnet werden. Im Rahmen des Forschungsprojektes wurde jedoch kein alternativer Überwachungsparameter für das Ultraschallschweißen entwickelt, vielmehr wurde eine ergänzende Qualitätssicherungsmöglichkeit geschaffen, um die Lücke nicht detektierbarer Fehlerquellen durch eine Maschinenüberwachung mit Hilfe der Thermografie zu schließen und damit weiter einen Schritt Richtung 100 % Kontrolle durch zerstörungsfreie Prüfung zu gehen.

Abstract

In order to be able to manage high production numbers, series welding processes such as ultrasonic welding are usually used to weld components. Although ultrasonic welding is a very common and generally reliable joining method, quality fluctuations can still occur that are not detected by the monitoring system of the welding machine.

For this thermography offers a new possibility to evaluate the ultrasonic welding process. The evaluation methods defined in the project made it possible to make comparable statements about the welding process as with the machine monitoring parameters welding energy and time. This means that an evaluation of the ultrasonic welding process using thermography is generally suitable and significant. The main advantage of thermography, however, is the visual image representation, the large number of different evaluation possibilities and the fast industrial implementation. In this way, process influences can be evaluated visually and irregularities in the component can be localized. However, the research project was not intended to develop an alternative monitoring parameter for ultrasonic welding. Instead, an additional quality assurance option was created to close the gap of non-detectable welding defects by the machine using thermography. This was a further step towards 100 % control through non-destructive testing.

Inhaltsverzeichnis I

Ab	kürzı	ungsvei	zeichnis	III
1	Einl	leitung.		1
	1.1 1.2 1.3	Proble	s des Forschungsvorhabens emstellung tzung.	1
2	Star	ıd der I	Fechnik	3
	2.1	2.1.1 2.1.2 2.1.3	Challschweißen von Kunststoffen Ultraschallschweißprozess Prozessparameter Konstruktive Gestaltung und Schweißnahtgeometrien	4 6
	2.2 2.3 2.4	Mecha Vorarl	Einflussgrößen auf den Ultraschallschweißprozess	11 13
3	Lösi		g zur Erreichung des Forschungsziels	
4			hrte Arbeiten	
	4.1 4.2 4.3 4.4 4.5 4.6	Einbri Versue Auswe Festle	Imaterialien und Probekörper ngen von definierten Einflussfaktoren auf den Schweißprozess chsaufbau ertung von Thermogrammen gung der Schweißparameter anische Prüfungen Zugversuche Dichtheits-Prüfung Berstdruck-Prüfung	19 21 25 28 28
5	Erg		und Diskussion	
	5.1 5.2	Einflu	ssgrößen auf die Auswertung von Thermografieaufnahmenmid 6.6 und Polyamid 6.6 GF30, kraftgeregelt Einfluss von Schweißparametern auf den DVS-Prüfkörper Einbringen von definierten Einflussfaktoren beim DVS-Prüfkörpe	31 36
		5.2.35.2.4	Einfluss von Schweißparametern auf eine Deckel-Gehäuse-Verbindung Einbringen von definierten Einflussfaktoren bei einer Deckel-Gehäuse-Verbindung	
	5.3	Polyar 5.3.1 5.3.2	mid 6.6 und Polyamid 6.6 GF30, geschwindigkeitsgeregelt Einfluss von Schweißparametern anhand des DVS-Prüfkörpers	64 65

		5.3.3 Einfluss von Schweißparametern anhand einer	
		Deckel-Gehäuse-Verbindung	73
		5.3.4 Einbringen von definierten Einflussfaktoren bei einer	
		Deckel-Gehäuse-Verbindung	77
	5.4	Kombination Polyamid 6.6 mit Polyamid 6.6 GF30, kraftgeregelt	82
	5.5	Kombination Polyamid 6.6 mit Polyamid 6.6 GF30,	
		geschwindigkeitsgeregelt	85
	5.6	Übertragbarkeit auf industrielle Bauteile	86
6	Zus	ammenfassung	89
	6.1	Zusammenfassung der Auswertung von Thermografieaufnahmen	89
	6.2	Zusammenfassung von Polyamid 6.6 und Polyamid 6.6 GF30	
		im kraftgeregelten Schweißprozess	90
	6.3	Zusammenfassung von Polyamid 6.6 und Polyamid 6.6 GF30	
		im geschwindigkeitsgeregelten Schweißprozess	91
	6.4	Zusammenfassung Kombination Polyamid 6.6 und Polyamid 6.6 GF30	92
	6.5	Zusammenfassung Übertragbarkeit auf industrielle Bauteile	92
	6.6	Grenzen und Potenziale der Thermografie beim Ultraschallschweißen	93
7	Lite	raturverzeichnis	95