Michaela Lindemann

Schriftenreihe zur Aufbereitung und Veredlung

77

Untersuchungen zur Effizienz bei der Querstrom-Windsichtung

Univ.-Prof. Dr.-Ing. Thomas Pretz Univ.-Prof. Dr.-Ing. Peter Quicker Univ.-Prof. Dr.-Ing. Hermann Wotruba

Untersuchungen zur Effizienz bei der Querstrom-Windsichtung

Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften

genehmigte Dissertation vorgelegt von

Michaela Lindemann

Master of Science RWTH aus Lindlar

Berichter: Univ.-Prof. Dr.-Ing. Thomas Pretz

Univ.-Prof. Dr.-Ing. Hermann Wotruba

Tag der mündlichen Prüfung: 28.05.2020

Schriftenreihe zur Aufbereitung und Veredlung

herausgegeben von

Univ.-Prof. Dr.-Ing. Thomas Pretz Univ.-Prof. Dr.-Ing. Peter Quicker Univ.-Prof. Dr.-Ing. Hermann Wotruba

Band 77

Michaela Lindemann

Untersuchungen zur Effizienz bei der Querstrom-Windsichtung

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2020)

Lehrstuhl für Aufbereitung und Recycling fester Abfallstoffe Univ.-Prof. Dr.-Ing. Thomas Pretz Wüllnerstraße 2 D - 52056 Aachen Tel. +49(0)241 - 80-95700, Fax +49(0)241 - 8092232 E-Maii: lehrstuhl@ifa.rwth-aachen.de

Lehr- und Forschungsgebiet Technologie der Energierohstoffe Univ.-Prof. Dr.-Ing. Peter Quicker Wüllnerstraße 2 D - 52056 Aachen Tel. +49(0)241 - 80-95705, Fax +49(0)241 - 8092624 E-Mail: info@teer.rwth-aachen.de

Lehr- und Forschungsgebiet Aufbereitung mineralischer Rohstoffe Univ.-Prof. Dr.-Ing. Hermann Wotruba Lochnerstraße 4 - 20 D - 52056 Aachen Tel. +49(0)241 - 80-97246, Fax +49(0)241 - 8092635 E-Mail: amr@amr.rwth-aachen.de

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7472-7 ISSN 1617-6545

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Umwege erweitern die Ortskenntnis.

Kurt Tucholsky

Danksagung

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Aufbereitung und Recycling (I.A.R.) der Rheinisch-Westfälischen Technischen Hochschule Aachen.

Mein herzlicher Dank gilt meinem Doktorvater und Leiter des I.A.R. Herrn Prof. Dr.-Ing. Thomas Pretz für die hilfreichen Anregungen und die konstruktive Kritik bei der Erstellung dieser Arbeit. Ich habe viel von ihm gelernt und mich durch seine stets offenen Worte und sein Vertrauen immer gut am Institut aufgehoben gefühlt.

Mein Dank gilt ferner Herrn Prof. Dr.-Ing. Hermann Wotruba, der sich als Zweitprüfer zur Verfügung gestellt hat. Herrn Prof. Dr.-Ing. Karl Nienhaus danke ich für die Übernahme des Prüfungsvorsitzes.

Dem Forschungszentrum VITO möchte ich für die finanzielle Unterstützung im Rahmen eines Stipendiums danken und für die Möglichkeit, meinen Horizont durch die Arbeit in einem internationalen Team zu erweitern. Dr. Roeland Geurts und Mieke Quaghebeur, PhD, möchte ich dafür danken, dass sie mich einen Teil meines Weges begleitet haben und mir ihre naturwissenschaftlich geprägte Herangehensweise an die Erforschung der Windsichtung nähergebracht haben.

Für das Lesen dieser Arbeit und ihre Anregungen danke ich besonders Kay Blankenheim und Andrea Thomae. Oberingenieur Dr.-Ing. Alexander Feil und meinen Kollegen von I.A.R. und TEER, insbesondere Nicolas Go und Marco Limburg, möchte ich für die gute Zusammenarbeit und die Diskussionen über die Arbeit "Über den Einfluss von Luftbeladung und Materialstromzusammensetzung auf das Erreichen eines Trennziels am Beispiel einer Querstrom-Windsichtung" danken. Der Titel hat es zwar nicht in die Dissertation geschafft, dafür aber das ein oder andere Ergebnis unserer Diskussionen.

Mein Dank geht auch an die studentischen Hilfskräfte des Instituts und den zahlreichen Studierenden, die ihre Abschlussarbeiten über die Windsichtung bei mir geschrieben haben. Ich danke insbesondere Susanne Funk und Alena Spies sowie Helena Schölwer, Janina Wildraut und Hendrik Handorf, die mit mir einige Stunden am Windsichter verbracht haben.

Neben all diesen fachlichen Wegbegleitern haben auch meine Freunde und Familie zu meinem Erfolg beigetragen. Danke!

Bei meinen Eltern und meiner Schwester möchte ich mich von Herzen dafür bedanken, dass sie mich immer unterstützt haben, sodass ich dadurch bestärkt meinen Weg gehen konnte.

Inhalt

	Formelzeichenverzeichnis	II
	Abkürzungsverzeichnis	I\
	Abbildungsverzeichnis	V
	Tabellenverzeichnis	.VII
1	Einleitung	1
2	Eigenschaften von Abfällen und Aufbereitungsverfahren	4
	2.1 Eigenschaften von Abfällen	4
	2.2 Sortierung von Abfällen	10
3	Windsichter im Recyclingsektor	14
	3.1 Funktionsprinzip und Ziele der Windsichtung	14
	3.2 Schwerkraftnutzende Windsichterbauarten für den Recyclingsektor	16
4	Querstrom-Windsichtung und Einflussfaktoren auf das Trennergebnis	22
	4.1 Verfahrensschritte einer Windsichtung	22
	4.2 Einfluss unveränderlicher Randbedingungen auf das Trennergebnis	28
	4.3 Einfluss von Betriebsparametern auf das Trennergebnis	36
	4.4 Einfluss der Luftbeladung auf das Trennergebnis	42
5	Herleiten der Forschungsfragen	49
6	Charakterisieren der Versuchsanlage und des Versuchsmaterials	52
	6.1 Bestandteile der Versuchsanlage	52
	6.2 Betrieb und Versuchsdurchführung	59
	6.3 Datenerhebung	65
	6.4 Versuchsmaterial	66
	6.5 Kennzahlen zur Bewertung des Trennerfolgs	68
	6.6 Charakteristik des verwendeten Windsichters	73

Inhalt

7	Versuchsreihen8	3
	7.1 Zielstellung der Versuche8	3
	7.2 Versuchsübersicht	5
8	Ergebnisse und Auswertung der Versuche8	9
	8.1 Einfluss des Durchsatzes auf das Wertstoffausbringen	0
	8.2 Einfluss der Aufgabegut-Zusammensetzung auf das Wertstoffausbringen 9	5
9	Beantwortung der Forschungsfragen	1
10	Schlussfolgerungen	5
	Quellenverzeichnis	9
	Abstract	8
	Kurzzusammenfassung	9
	Anhang	0
	Lebenslauf	8

Formelzeichenverzeichnis

Α	[m²]	Strömungsquerschnitt eines Sichtkanals
A_P	[m²]	Anströmfläche eines Partikels
C _W	[-]	Widerstandsbeiwert
Cz	[-]	Reinheit eines Gemisches
F_G	$[kg \cdot m \cdot s^{-2}]$	Gewichtskraft
F _T	[kg·m·s ⁻²]	Trägheitskraft
Fw	[kg·m·s ⁻²]	Widerstandskraft
g	[m·s ⁻²]	Erdbeschleunigung
m	[kg]	Masse
$m_{i,LM}$	[kg]	Masse der Komponente i in Outputstrom LM
$p_{\text{dynamisch}}$	[Pa]	dynamischer Druck
Q	[kg·h $^{-1}$] bzw. [m 3 ·h $^{-1}$]	Durchsatz
R _{m,i}	[-]	Masseausbringen in Outputstrom i
$R_{w,i}$	[-]	Wertstoffausbringen der Komponente i
v	[m·s ⁻¹]	mittlere Strömungsgeschwindigkeit
Ċ	$[m^3 \cdot h^{-1}]$	Volumenstrom
V_{Band}	[m·s ⁻¹]	Förderbandgeschwindigkeit
VF	[m·s ⁻¹]	Geschwindigkeit eines Fluids
V_{P}	[m³]	Partikelvolumen
\mathbf{v}_{S}	[m·s ⁻¹]	Sinkgeschwindigkeit eines Partikels

Griechische Variablen

К	[-]	Trennschärfe
μ	$[kg_s \cdot m_l^{-3}]$	Feststoffbeladung der Luft, auch Luftbeladungsdichte
μ_{real}	[kg·m ⁻³]	tatsächliche mittlere Luftbeladung
ξ		Partikelmerkmalswert
ρ	[kg·m ⁻³]	Dichte, bei Feststoffen Rohdichte

Indizes

Α Aufgabegut ī Luft LG Leichtgut F Fluid Р Partikel Feststoff s Schwergut SG 25 25er Perzentil 75er Penzentil 75 Laufvariablen i, n

Abkürzungsverzeichnis

AbfG Abfallbeseitigungsgesetz

AVV Abfallverzeichnis-Verordnung

BBP <u>Buchbinderpappe</u>

E Total Efficiency nach Worrell und Vesilind

EN Efficiency Number nach Rietema

GewAbfV Gewerbeabfallverordnung

hl <u>h</u>inten <u>l</u>inks hr <u>h</u>inten <u>r</u>echts

KrW-/AbfG Kreislaufwirtschafts- und Abfallgesetz

KrWG Kreislaufwirtschaftsgesetz

LG Leichtgut

LGC <u>Leichtgut-Container</u>
LM <u>leichtes Material</u>
Ma.-% Masseprozent
Mg <u>Megagramm</u>

PET <u>Polyethylenterephthalat</u>

PVC <u>P</u>oly<u>v</u>inyl<u>c</u>hlorid

SG <u>S</u>chwergut

SM <u>s</u>chweres <u>M</u>aterial
SpM <u>Spiegelmosaik</u>
vl <u>v</u>orne <u>l</u>inks
vr vorne rechts

Abbildungsverzeichnis

Abbildung 1:	Grundfließbild einer Abfolge von Prozessschritten mit Trennziel	12
Abbildung 2:	Benennung der Output-Ströme bei der Windsichtung für das Trennziel Sortieren	15
Abbildung 3:	Grundprinzip der Gegenstrom- und Querstrom-Sichtung im Schwerefeld	. 17
Abbildung 4:	Sichtkanal eines Zick-Zack-Sichters.	. 18
Abbildung 5:	Skizze eines Querstrom-Windsichters mit geneigtem Luftstrom	21
Abbildung 6:	Verfahrensschritte der Windsichtung	. 23
Abbildung 7:	Beispielhafter Aufbau eines Querstrom-Windsichters	. 24
Abbildung 8:	Exemplarische Darstellung von Schwankungen eines Durchsatzes in Abhängigkeit der Zeit	. 25
Abbildung 9:	Beispielflugkurven von Partikeln im Trennraum eines Querstrom-Windsichters und Visualisierung charakteristischer Bereiche, die von Leichtgut- und Schwergutpartikeln durchquert werden	. 27
Abbildung 10:	Partikelflugbahnen zur Darstellung der Phasen eines Trennprozesses im Quer- strom-Windsichter. Darstellung von Partikeln mit horizontaler und vertikaler Kraftkomponente am Ende der einzelnen Phasen	. 28
Abbildung 11:	Veränderliche Größen einer Querstrom-Windsichtung	. 37
Abbildung 12:	Arbeitsbereiche der Windsichtung je nach Trennziel	. 38
Abbildung 13:	Übersicht über die Form der verwendeten Versuchsmaterialien, Sichter-Bauarten und Trennverfahren anderer Veröffentlichungen	
Abbildung 14:	Schematische Darstellung des Schwarmeinflusses. Freie Umströmung eines Partikelschwarms und Durchströmung eines Partikelschwarms aufgrund eines begrenzten Strömungsfeldes	. 47
Abbildung 15:	Aufbau des Querstrom-Windsichters des I.A.R.	. 53
Abbildung 16:	Vibrationsförderrinne	. 54
Abbildung 17:	Darstellung des Schiebers und seiner Anordnung in der Vibrationsförderrinne	. 55
Abbildung 18:	Sichtraum des verwendeten Windsichters	. 56
Abbildung 19:	Geöffneter Leichtgut-Container und Zyklon	. 57
Abbildung 20:	Messprinzip des Differenzdruckverfahrens.	. 60
Abbildung 21:	Anordnung der Messebene im Zuluftkanal des Versuchs-Sichters	61
Abbildung 22:	Anordnung der Messpunkte im Zuluftkanal	62

Abbildungsverzeichnis

Abbildung 23: Vorbereitung des Versuchsmaterials in der Vibrationsförderrinne64
Abbildung 24: Versuchsmaterial
Abbildung 25: Bezeichnung und Ort des Auftretens der Luftströme
Abbildung 26: Messnetz für Strömungsprofilmessungen im Zuluftkanal
Abbildung 27: Strömungsprofil im Zuluftkanal bei 20 Hz
Abbildung 28: Strömungsprofil im Zuluftkanal bei 22 Hz
Abbildung 29: Darstellung der mittleren Luftgeschwindigkeit der Geraden für 20 Hz und 22 Hz 78
Abbildung 30: Trenngradkurve für PVC bei einer Luftbeladungsdichte von 300 g·m ⁻³
Abbildung 31: Transportkapazität für einen Luftvolumenstrom von 940 m³h⁻¹
Abbildung 32: Masseausbringen LG für einen Luftvolumenstrom von 940 m³h⁻¹
Abbildung 33: Wertstoffausbringen des PVC und BBP in Abhängigkeit der Luftbeladungsdichte für einen Luftvolumenstrom von 1.300 m³h-¹
Abbildung 34: Partikel an leichtem Material, die ins Leichtgut ausgebracht werden, in Abhängig- keit der aufgegebenen Partikelanzahl pro Sekunde91
Abbildung 35: Maximale Bandbelegung der Versuche mit PVC/SpM und BBP/SpM in Abhängig- keit des erreichten Wertstoffausbringens des leichten Materials ins Leichtgut 92
Abbildung 36: Trendlinie je Zusammensetzung für das Wertstoffasubringen des PVC bei unterschiedlichen Luftbeladungsdichten
Abbildung 37: Wertstoffausbringen des PVC für Versuche gleicher Zusammensetzung in Abhängigkeit der Luftbeladungsdichte
Abbildung 38: Abnahme des Wertstoffausbringens des PVC je Luftbeladungsdichtenerhöhung 94
Abbildung 39: Wertstoffausbringen des PVC ins Leichtgut in Abhängigkeit des Massenanteils von PVC im Aufgabegut96
Abbildung 40: Wertstoffausbringen des PVC in Abhängigkeit der Versuchsdauer für die Mischungen mit 3, 5 und 7 Ma % PVC für ein Aufgabevolumen von 2,1 l
Abbildung 41: Wertstoffausbringen des PVC in Abhängigkeit der Bandbelegung für die Versuche mit konstanten Aufgabevolumina98
Abbildung 42: Wertstoffausbringen des PVC in Abhängigkeit der Partikelanzahl an PVC im Aufgabegut99
Abbildung 43: Wertstoffausbringen des PVC in Abhängigkeit der Partikelanzahl im Aufgabegut. 100

Abbildung 44: W	ertstoffausbringen des PVC ins Leichtgut in Abhängigkeit der Luftbeladungs-	
	ichte für drei Aufgabegutvolumina bei variierenden Zusammensetzungen des	
Aı	ufgabegutes	٥00
•	nearized Efficiencies für getestete Zusammensetzungen und drei ufgabevolumina1	102
Abbildung 46: Ma	asse des PVC im Leichtgut in Abhängigkeit der Luftbeladungsdichte1	L 0 4
Abbildung 47: W	ertstoffausbringen des PVC in Abhängigkeit der Luftbeladungsdichte	L 0 5
-	asse PVC im Leichtgut für Monoversuche und Mischversuche in Abhängigkeit er Luftbeladungsdichte von PVC	106
Abbildung 49: Ma	asse des PVC im Leichtgut in Abhängigkeit der Bandbelegung 1	L 07
Zι	iischung von PVC und SpM für gegebene Aufgabegutvolumina und variierende usammensetzung.	
	ben: Wertstoffausbringen des PVC in Abhängigkeit der Luftbeladungsdichte an VC im Mischversuch.	
	Inten: Ausbringen des SpM in das Leichtgut und Massenanteil des PVC in der ufgabe	110
•	ben: Ausbringen des PVC ins Leichtgut in Abhängigkeit der Luftbeladungsdichte on PVC und der Luftbeladungsdichte.	
	Inten: Ausbringen des SpM ins Leichtgut und ausgetragene Masse an SpM ins eichtgut	111
_	ertstoffausbringen des PVC dargestellt in Abhängigkeit der Partikelanzahl pro ekunde für einen Luftvolumenstrom von 1.040 m³·h⁻¹	114
•	bersicht der Gewichtsverteilung von geschäumtem PVC, Buchbinderpappe nd Spiegelmosaik1	131
-	bersicht der ermittelten Schüttdichten von geschäumtem PVC, Buchbinder- appe und Spiegelmosaik	131
Abbildung 55: Ty	penschild der Vibrationsförderrinne	133
Abbildung 56: Zy	rklon im Technikum des I.A.R. mit Bemaßung 1	134
Abbildung 57: Ty	penschild des Windsichter-Gebläses 1	135
Abbildung 58: W	ertstoffausbringen des PVC für verschiedene Anteile an PVC im Aufgabegut 1	137

Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1: Exemplarischer Vergleich der Kennzahlen zur Beschreibung der Feststoffbeladung 40
Tabelle 2: Eigenschaften der verwendeten Partikelsorten
Tabelle 3: Transportkapazität in Abhängigkeit der mittleren Strömungsgeschwindigkeit im Zuluftkanal für leichte Materialien82
Tabelle 4: Übersicht der konstanten und variablen Parameter der Versuchsreihen
Tabelle 5: Zusammensetzungen des Aufgabegutes für die Versuchsreihe V "Variierende Zusammensetzung bei definierten Aufgabegut-Volumina"87
Tabelle 6: Zusammensetzungen des Aufgabegutes für die Versuchsreihe LM "Variierende Masse an SM bei konstanter Masse an LM"
Tabelle 7: Mögliche Einflussfaktoren auf das Trennergebnis und ihre Auswirkungen
Tabelle 8: Daten zur Berechnung der Trennschärfe