## **Berliner Schriften zur Agrar- und Umweltökonomik**



Band 23



und Bewertung von ausgewählten

**Julian Braun** 



# Weiterentwicklung eines sektorkonsistenten Betriebsgruppenmodells um Treibhausgasemissionen und Bewertung von ausgewählten Minderungsstrategien

#### Dissertation

zur Erlangung des akademischen Grades doctor rerum agriculturarum (Dr. rer. agr.)

eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

von

M.Sc. Julian Braun geboren am 20.10.1983 in Berlin

Präsidentin der Humboldt-Universität zu Berlin

Prof. Dr.-Ing. Sabine Kunst

Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm

#### Gutachter

- 1. Prof. Dr. Dr. h.c. Dieter Kirschke
- 2. Dr. Frank Offermann
- 3. PD Dr. Andreas Meyer-Aurich

Tag der mündlichen Prüfung: 02. Oktober 2019

## Berliner Schriften zur Agrar- und Umweltökonomik

herausgegeben von Dieter Kirschke, Martin Odening, Harald von Witzke Humboldt-Universität zu Berlin

Band 23

### Julian Braun

Weiterentwicklung eines sektorkonsistenten Betriebsgruppenmodells um Treibhausgasemissionen und Bewertung von ausgewählten Minderungsstrategien

> Shaker Verlag Düren 2020

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Berlin, Humboldt-Univ., Diss., 2019

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7240-2 ISSN 1618-8160

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

#### i

## **Danksagung**

Die vorliegende Arbeit entstand während der Zeit als wissenschaftlicher Mitarbeiter am Fachgebiet Agrarpolitik an der Humboldt-Universität zu Berlin und am Thünen-Institut für Betriebswirtschaft in Braunschweig.

An dieser Stelle möchte ich mich bei all denen herzlich bedanken, die mich bei der Anfertigung meiner Dissertation so tatkräftig unterstützt haben.

Prof. Dr. Dr. h.c. Dieter Kirschke möchte ich für die vielen guten Hinweise und Anregungen danken, die mir bei der Ausarbeitung dieser Arbeit eine wertvolle Hilfe waren.

Dr. Frank Offermann hat die Arbeit während meiner Zeit am Thünen-Institut für Betriebswirtschaft betreut. Ihm gilt mein ganz besonderer Dank für die vielen Diskussionen und für die stete Bereitschaft, meine unzähligen Fragen zum Modell geduldig zu beantworten.

PD Dr. habil. Andreas Meyer-Aurich danke ich für die guten Kommentare und Anmerkungen sowie für die Bereitschaft zur Übernahme des externen Gutachtens.

Dr. Astrid Häger, Kerstin Oertel und Helga Meaini möchte ich für die freundschaftlichen Gespräche am Fachgebiet für Agrarpolitik danken, die immer eine willkommene Abwechslung waren.

Weiterhin möchte ich Yusuf Nadi Karatay, Lukas Scholz und Jonas Bamberg für den fachlichen und auch insbesondere den außerfachlichen Austausch danken, der mich auf meinem Weg zur Vollendung der Arbeit immer wieder bestärkt hat.

Mein ganz besonderer Dank geht an meine Familie, die mir während der Anfertigung der Arbeit immer uneingeschränkt helfend zur Seite stand. Jules Braun und Wiebke Wolters danke ich für das aufwendige Korrekturlesen.

Dr. Kim Sophie Mengering hat durch ihre immerwährende Kraft und das Vertrauen in mich zu dem Gelingen dieser Arbeit einen großen Teil beigetragen.

Vielen Dank!

## Inhaltsverzeichnis

| D  | anksagung                                                                           |      |
|----|-------------------------------------------------------------------------------------|------|
| ln | haltsverzeichnis                                                                    | iii  |
| A  | bbildungsverzeichnis                                                                | vi   |
| Tá | abellenverzeichnis                                                                  | viii |
| A  | bkürzungsverzeichnis                                                                | xi   |
| 1  | Einleitung                                                                          | 1    |
|    | 1.1 Hintergrund                                                                     | 1    |
|    | 1.2 Zielstellung                                                                    | 2    |
|    | 1.3 Vorgehensweise                                                                  | 3    |
| 2  | Emissionen klimarelevanter Gase und Klimaschutzpolitik im                           | _    |
|    | Agrarsektor                                                                         |      |
|    | 2.1 Bedeutung der Emissionen klimarelevanter Gase aus der Landwirtschaft            |      |
|    | 2.1.1 Methan                                                                        |      |
|    | 2.1.2 Lachgas                                                                       |      |
|    | 2.1.3 Kohlendioxid                                                                  |      |
|    | 2.2 Klimapolitische Rahmenbedingungen                                               |      |
|    | 2.2.1 Europäische Ebene                                                             |      |
|    | 2.2.1.1 Klimapolitische Ziele der EU                                                |      |
|    | 2.2.1.2 Klimaschutzrelevante Maßnahmen für die Landwirtschaft 2.2.2 Nationale Ebene |      |
|    | 2.2.2.1 Klimaschutzpolitische Ziele der Bundesregierung                             |      |
|    | 2.2.2.2 Klimaschutzrelevante Maßnahmen für die Landwirtschaft                       |      |
|    | 2.3 Erfassung von THG-Emissionen aus dem Agrarsektor                                | 23   |
|    | 2.3.1 Emissionsberichterstattung (UNFCCC-Systematik)                                | 23   |
|    | 2.3.2 Umweltökonomische Gesamtrechnung                                              |      |
|    | 2.3.3 Ökobilanzierung                                                               | 27   |
|    | 2.3.4 CO <sub>2</sub> -Fußabdruck (Carbon Footprint)                                | 28   |
|    | 2.4 Fazit des Kapitels                                                              | 28   |
| 3  | Ökonomische Modelle zur Abschätzung von THG-Emissionen aus der                      |      |
|    | Landwirtschaft                                                                      | 31   |
|    | 3.1 Systematik von quantitativen Modellen in der Agrarumweltanalyse                 | 31   |

|   | 3.2 | Gesa   | mtwirtschaftliche Modelle                                              | 34  |
|---|-----|--------|------------------------------------------------------------------------|-----|
|   |     | 3.2.1  | EPPA                                                                   | 34  |
|   |     | 3.2.2  | PRIMES/GENESIS/GAINS                                                   | 35  |
|   |     | 3.2.3  | GTEM                                                                   | 36  |
|   | 3.3 | Sekto  | rale und regionale Modelle                                             | 37  |
|   |     | 3.3.1  | CAPRI                                                                  | 37  |
|   |     | 3.3.2  | FASOM-GHG                                                              | 38  |
|   | 3.4 | Einze  | lbetriebliche Modelle                                                  | 40  |
|   |     | 341    | EFEM                                                                   | 40  |
|   |     |        | AROPA-GHG                                                              |     |
|   | 3 5 |        | ssfolgerungen für die vorliegende Arbeit                               |     |
|   | 5.5 | Ocina  | ssingerungen für die vonlegende Albeit                                 | 70  |
| 4 | Imp | olemer | tierung von THG-Emissionen in FARMIS                                   | 49  |
|   | 4.1 | Das E  | Setriebsgruppenmodell FARMIS                                           | 49  |
|   |     | 4.1.1  | Modellsystem                                                           | 49  |
|   |     |        | 4.1.1.1 Datenbasis und Datenaufbereitung                               | 51  |
|   |     |        | 4.1.1.2 Generierung der Input-/Outputkoeffizienten                     |     |
|   |     |        | 4.1.1.3 Beschreibung der Zielfunktion, Restriktionen und Kalibrierung. |     |
|   |     |        | 4.1.1.4 Szenarienanalyse und Ergebnisauswertung                        |     |
|   |     |        | Abbildung des Pachtmarktes für Boden                                   |     |
|   |     |        | Abbildung von pflanzlichen Verfahrensalternativen                      |     |
|   | 4.2 | Imple  | mentierte Anpassungsmöglichkeiten                                      | 58  |
|   |     | 4.2.1  | Verfahrensalternativen für pflanzliche Produktionsverfahren            | 58  |
|   |     | 4.2.2  | Differenzierung von organischen und mineralischen Böden                | 61  |
|   | 4.3 | Syste  | matik zur Berechnung von THG-Emissionen im Agrarsektor                 | 66  |
|   | 4.4 | Berec  | hnung und Implementierung von THG-Emissionen in FARMIS                 | 69  |
|   |     | 4.4.1  | Berechnung und Implementierung von N <sub>2</sub> O-Emissionen         | 71  |
|   |     |        | 4.4.1.1 Direkte N <sub>2</sub> O-Emissionen                            | 72  |
|   |     |        | 4.4.1.2 Indirekte N <sub>2</sub> O-Emissionen                          | 80  |
|   |     | 4.4.2  | Berechnung und Implementierung von CH <sub>4</sub> -Emissionen         | 82  |
|   |     |        | 4.4.2.1 Enterische Fermentation                                        | 83  |
|   |     |        | 4.4.2.2 Wirtschaftsdüngerlagerung                                      |     |
|   |     | 4.4.3  | Berechnung und Implementierung von CO <sub>2äq</sub> -Emissionen       |     |
|   |     |        | 4.4.3.1 Organische Böden                                               |     |
|   |     |        | 4.4.3.2 Kalkung                                                        |     |
|   |     |        | 4.4.3.3 Produktion von Dünge- und Pflanzenschutzmitteln                |     |
|   |     |        | 4 4 3 4 Finsatz von Diesel Heizöl Flektrizität und Schmierstoffen      | KU. |

|    | 4.5   | Einor  | dnung der Modellergebnisse                                                     | 90  |
|----|-------|--------|--------------------------------------------------------------------------------|-----|
|    | 4.6   | Abbild | dung von THG-Minderungspolitiken                                               | 95  |
|    |       | 4.6.1  | Abbildung einer Steuer auf CO <sub>2äq</sub> -Emissionen                       | 95  |
|    |       | 4.6.2  | Abbildung einer Stickstoffüberschussabgabe                                     | 96  |
|    | 4.7   | Fazit  | des Kapitels                                                                   | 97  |
| 5  | Erg   | ebnis  | se der Modellrechnungen                                                        | 99  |
|    | 5.1   | Refer  | enzszenario                                                                    | 100 |
|    |       | 5.1.1  | Beschreibung der Baseline 2025                                                 | 100 |
|    |       | 5.1.2  | THG-Emissionen in der Baseline 2025                                            | 101 |
|    | 5.2   | Imple  | mentierter Politikansatz: direkte Emissionsbesteuerung                         | 105 |
|    |       | 5.2.1  | Auswirkungen auf das THG-Inventar nach Entstehungsbereichen und Betriebsformen | 106 |
|    |       | 5.2.2  | Auswirkungen auf die Produktionsstruktur                                       |     |
|    |       |        | Auswirkungen auf ökonomische Kennzahlen                                        |     |
|    |       |        | Zwischenfazit                                                                  |     |
|    | 5.3   | Imple  | mentierter Politikansatz: Stickstoffüberschussabgabe                           | 120 |
|    |       | 5.3.1  | Auswirkungen auf das THG-Inventar nach Entstehungsbereichen                    |     |
|    |       | 500    | und Betriebsformen                                                             |     |
|    |       |        | Auswirkungen auf die Produktionsstruktur                                       |     |
|    |       |        | Auswirkungen auf ökonomische Kennzahlen  Zwischenfazit                         |     |
|    |       | 5.5.4  | ZWISCHEHIAZIL                                                                  | 131 |
| 6  |       |        | enfassende Gegenüberstellung, Diskussion und                                   |     |
|    |       |        | olgerungen                                                                     |     |
|    |       |        | mmenfassende Gegenüberstellung der Modellergebnisse                            |     |
|    |       |        | ssion und Schlussfolgerungen                                                   |     |
|    | 6.3   | Zuküı  | nftiger Forschungsbedarf                                                       | 151 |
| Zι | ısan  | nmenf  | assung                                                                         | 155 |
| Αl | ostra | act    |                                                                                | 163 |
| Li | tera  | tur    |                                                                                | 171 |
| Αı | nhar  | ıg     |                                                                                | 185 |

## Abbildungsverzeichnis

| Applicating 1. | Deutschland in 2015 (ohne LULUCF)                                                                                                                | 8   |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abbildung 2:   | Entwicklung der Methan (CH <sub>4</sub> )-Emissionen in kt CO <sub>2ãq</sub> , differenziert nach Sektoren                                       | 9   |
| Abbildung 3:   | Entwicklung der Lachgas (N <sub>2</sub> O)-Emissionen in kt CO <sub>2äq</sub> , differenziert nach Sektoren                                      | 11  |
| Abbildung 4:   | Entwicklung der Kohlendioxid (CO <sub>2</sub> )-Emissionen in kt, differenziert nach Sektoren                                                    | 12  |
| Abbildung 5:   | Bausteine des sektoralen Berichtsmoduls Landwirtschaft                                                                                           | 26  |
| Abbildung 6:   | Vergleich der Grenzvermeidungskosten unterschiedlicher Szenarien aus CAPRI, AROPA-GHG und EFEM                                                   | 44  |
| Abbildung 7:   | Schema des Lösungsweges von FARMIS                                                                                                               | 50  |
| Abbildung 8:   | Schematische Darstellung der Differenzierung von Verfahrensalternativen für Ackerverfahren                                                       | 59  |
| Abbildung 9:   | Schematische Darstellung der Differenzierung von Intensitätsstufen für die Grünlandbewirtschaftung                                               | 60  |
| Abbildung 10:  | Verteilung der Moorflächen (Acker- und Grünland) in Deutschland, differenziert nach Bundesländern                                                | 62  |
| Abbildung 11:  | Verteilung der Moorflächen (Acker- und Grünland) in Deutschland, differenziert nach Intensitätsstufen und Betriebsformen                         | 63  |
| Abbildung 12:  | Vergleich: UNFCCC-Systematik und sektorale Systematik                                                                                            | 67  |
| Abbildung 13:  | Schematische Darstellung der in FARMIS implementierten THG-Quellen                                                                               | 70  |
| Abbildung 14:  | THG-Emissionen in der Baseline 2025, differenziert nach Bundesländern                                                                            | 105 |
| Abbildung 15:  | Auswirkungen einer $CO_{2\bar{a}q}$ -Steuer zwischen 2,5 $-$ 30 €/t $CO_{2\bar{a}q}$ auf die THG-Emissionen differenziert nach Bundesländern     | 107 |
| Abbildung 16:  | Umfänge wiedervernässter Flächen bei einer CO <sub>2äq</sub> -Steuer von 6,1 €/t CO <sub>2äq</sub> -Emissionen, differenziert nach Bundesländern | 112 |
| Abbildung 17:  | Grenzvermeidungskostenkurve bei einer CO <sub>2āq</sub> -Steuer zwischen 2,5 – 30 €/t CO <sub>2āq</sub> -Emissionen                              | 114 |
| Abbildung 18:  | Änderung der THG-Emissionen bei einer CO <sub>2åq</sub> -Steuer zwischen 2.5 – 30 €/t CO <sub>2åq</sub> differenziert nach Bundesländern         | 114 |

| Abbildung 19: | Änderung des Betriebseinkommens bei einer CO <sub>2äq</sub> -Steuer zwischen 2,5 – 30 €/t CO <sub>2äq</sub> , differenziert nach Bundesländern                                             | 116 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abbildung 20: | Steuerabgaben bei einer CO <sub>2äq</sub> -Steuer von 6,1 €/t CO <sub>2äq</sub> -<br>Emissionen, differenziert nach Bundesländern im Vergleich:<br>UNFCCC-Systematik vs. eigene Systematik | 119 |
| Abbildung 21: | Auswirkungen einer N-Überschussabgabe zwischen 1 – 15 €/kg<br>N auf die THG-Emissionen, differenziert nach Betriebsformen                                                                  | 122 |
| Abbildung 22: | Auswirkungen einer N-Überschussabgabe zwischen 1 – 15 €/kg<br>N auf die THG-Emissionen, differenziert nach Bundesländern                                                                   | 123 |
| Abbildung 23: | Auswirkungen einer N-Überschussabgabe von 9,1 €/kg N auf die<br>Landnutzungsintensitäten auf Acker- und Grünland, differenziert<br>nach Betriebsformen                                     | 129 |
| Abbildung 24: | Grenzvermeidungskosten bei einer N-Überschussabgabe zwischen 1 – 15 €/kg N                                                                                                                 | 132 |
| Abbildung 25: | Änderung des Betriebseinkommens bei einer N-<br>Überschussabgabe zwischen 1–15 €/kg N, differenziert nach<br>Betriebsformen                                                                | 136 |
| Abbildung 26: | Steuerabgaben bei einer N-Überschussabgabe von 9,1 €/kg N<br>differenziert nach Betriebsformen im Vergleich: UNFCCC-<br>Systematik vs. eigene Systematik                                   | 137 |
| Abbildung 27: | Vergleich der Grenzvermeidungskosten unterschiedlicher Szenarien aus CAPRI, AROPA-GHG, EFEM und FARMIS                                                                                     | 148 |
| Abbildung 28: | Schematische Darstellung der in FARMIS implementierten THG-Quellen                                                                                                                         | 157 |
| Figure 29:    | Schematic representation of the GHG sources implemented in FARMIS                                                                                                                          | 165 |

## **Tabellenverzeichnis**

| Tabelle 1:  | Klimaschutzreievante Ansatze in der GAP                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabelle 2:  | Emissionshöchstmengen der NEC-Richtlinie und Reduktionsverpflichtungen der neuen NEC-Richtlinie17                                                                                                                              |
| Tabelle 3:  | Zusammenfassung der klimaschutzrelevanten Maßnahmen in der Landwirtschaft und Landnutzung im Klimaschutzplan 205020                                                                                                            |
| Tabelle 4:  | Zusammenfassung der klimaschutzrelevanten Maßnahmen in der DüV 201722                                                                                                                                                          |
| Tabelle 5:  | Systematik von quantitativen Modellen in der Agrarumweltanalyse32                                                                                                                                                              |
| Tabelle 6:  | Szenarienergebnisse für die EU mit GTEM: Grenzvermeidungskosten und Emissionsreduktionen für 2010                                                                                                                              |
| Tabelle 7:  | Szenarienergebnisse für Deutschland mit CAPRI: Grenzvermeidungskosten in €/tCO <sub>2äq</sub> und Emissionsreduktionen in % zur Referenz für 200138                                                                            |
| Tabelle 8:  | Szenarienergebnisse für die USA mit ASM-GHG: Grenzvermeidungskosten in \$/MTCE und Emissionsreduktionen in MMTCE zur Referenz, differenziert nach THG-Emissionen für 2001                                                      |
| Tabelle 9:  | Szenarienergebnisse für Baden-Württemberg mit EFEM: Grenzvermeidungskosten in €/tCO₂aq und Veränderung der Emissionsreduktionen in % zur Referenz, differenziert nach Betriebsformen                                           |
| Tabelle 10: | Szenarienergebnisse für die EU-15 mit AROPA-GHG: Emissionsreduktion in %, Vermeidungsleistung in MTCO <sub>2āq</sub> , Grenzvermeidungskosten in €/tCO <sub>2āq</sub> zur Referenz und Verhältnis der Kostenersparnis für 2001 |
| Tabelle 11: | In FARMIS modellierte THG-Emissionen aus der Landwirtschaft und die Detailstufe der Berechnungsverfahren69                                                                                                                     |
| Tabelle 12: | Messergebnisse der THG-Emissionen nach Nutzungskategorie86                                                                                                                                                                     |
| Tabelle 13: | Emissionsfaktoren für Dünge- und Pflanzenschutzmittel                                                                                                                                                                          |
| Tabelle 14: | Emissionsfaktoren für Energieträger89                                                                                                                                                                                          |
| Tabelle 15: | Vergleich von Methan-, Lachgas- und Kohlendioxidemissionen aus FARMIS (Basisjahr 2010-12), GAS-EM Ergebnissen aus dem NIR (UBA 2012) und aus Haenel et al. (2016) für 2010 in Tsd. t CO <sub>28q</sub> -Emissionen             |

| Tabelle 16: | Vergleich der THG-Emissionen aus den Vorketten und aus den drainierten organischen Böden aus FARMIS (Basisjahr) in Tsd. t CO <sub>2aq</sub> -Emissionen                              | 93  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabelle 17: | Überblick über die berechneten Szenarien                                                                                                                                             | 100 |
| Tabelle 18: | Entwicklung der THG-Emissionen vom Basisjahrzeitraum 2010-<br>2012 zur Baseline 2025                                                                                                 | 101 |
| Tabelle 19: | THG-Emissionen in der Baseline 2025, differenziert nach Betriebsformen                                                                                                               | 103 |
| Tabelle 20: | Auswirkungen einer CO <sub>2äq</sub> -Steuer von 6,1 €/t CO <sub>2äq</sub> -Emissionen auf die Gesamt-THG-Emissionen im Vergleich zur Baseline 2025                                  | 109 |
| Tabelle 21: | Auswirkungen einer CO <sub>2aq</sub> -Steuer von 6,1 €/t CO <sub>2aq</sub> -Emissionen auf die Produktionsstruktur im Vergleich zur Baseline 2025, differenziert nach Betriebsformen | 111 |
| Tabelle 22: | Auswirkungen einer CO <sub>2äq</sub> -Steuer von 6,1 €/t CO <sub>2äq</sub> -Emissionen auf Einkommensindikatoren im Vergleich zur Baseline 2025, differenziert nach Betriebsformen   | 118 |
| Tabelle 23: | Auswirkungen einer N-Überschussabgabe von 9,1 €/kg N auf die<br>THG-Emissionen im Vergleich zur Baseline 2025, differenziert<br>nach Betriebsformen                                  | 126 |
| Tabelle 24: | Auswirkungen einer N-Überschussabgabe von ca. 9,1 €/kg N auf die Produktionsstruktur im Vergleich zur Baseline 2025, differenziert nach Betriebsformen                               | 130 |
| Tabelle 25: | Auswirkungen einer N-Überschussabgabe von 9,1 €/kg N auf Einkommensindikatoren im Vergleich zur Baseline 2025, differenziert nach Betriebsformen                                     | 134 |
| Tabelle 26: | Vergleich der Auswirkungen der Szenarien CO <sub>2</sub> -Tax-5 % und N-Surp-5 % auf die Gesamt-THG-Emissionen                                                                       | 141 |
| Tabelle 27: | Vergleich der Auswirkungen der Szenarien CO <sub>2</sub> -Tax-5 % und N-Surp-5 % auf die Produktionsstruktur                                                                         | 143 |
| Tabelle 28: | Vergleich der Auswirkungen der Szenarien CO <sub>2</sub> -Tax-5 % und N-Surp-5 % auf Einkommensindikatoren                                                                           | 144 |
| Tabelle 29: | Überblick über die berechneten Szenarien                                                                                                                                             | 159 |
| Table 30:   | Overview of the calculated scenarios                                                                                                                                                 | 167 |
| Tabelle A1: | In EPPA berechnete landwirtschaftliche THG-Emissionen und weitere Gase                                                                                                               | 185 |
| Tabelle A2: | In GTEM berechnete landwirtschaftliche THG-Emissionen                                                                                                                                | 185 |

| Tabelle A3: | In CAPRI berechnete landwirtschaftliche THG-Emissionen185                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabelle A4: | In FASOM-GHG berücksichtigte landwirtschaftliche THG-Quellen und -Senken                                                                                                                           |
| Tabelle A5: | In EFEM berechnete landwirtschaftliche THG- und Ammoniak Emissionen                                                                                                                                |
| Tabelle A6: | In AROPA-GHG berechnete landwirtschaftliche THG-Emissionen187                                                                                                                                      |
| Tabelle A7: | Durchschnittliche Entwicklung betriebsstruktureller Kennzahlen vom Basisjahrzeitraum 2010-12 zur Baseline 2025188                                                                                  |
| Tabelle A8: | Auswirkungen einer CO <sub>2äq</sub> -Steuer von 6,1 €/t CO <sub>2äq</sub> -Emissionen auf die Pachtpreise im Vergleich zur Baseline 2025, differenziert nach Bodenqualitäten und Bundesländern189 |
| Tabelle A9: | Auswirkungen einer N-Überschussabgabe (5% THG-<br>Minderungsziel) auf den Agrarsektor im Vergleich zur Baseline<br>2025                                                                            |

## Abkürzungsverzeichnis

AROPA Agriculture, Recomposition de l'Offre et Politique Agricole

CAPRI Common Agricultural Policy Regionalised Impact

CH<sub>4</sub> Methan

CO<sub>2</sub> Kohlenstoffdioxid

CO<sub>2ãa</sub> Kohlenstoffdioxid-Äquivalent

CO<sub>2</sub>-Tax Szenario direkte Emissionsbesteuerung

DK Dauerkultur
DüG Düngegesetz

DüMV Düngemittelverordnung
DüV Düngeverordnung

EEG Erneuerbare Energien Gesetz
EFEM Economic Farm Emission Model

EHS Emissionshandelssystem
EU Europäische Union

FARMIS Farm Modelling Information System

FB sonstiger Futterbau

GAP Gemeinsame Agrarpolitik

GHG Greenhouse Gas

GVK Grenzvermeidungskostenkurven

IPCC Intergovernmental Panel on Climate Change

KOM Europäische Kommission LF Landwirtschaftliche Fläche

LULUCF Landnutzung, Landnutzungsänderung und Forstwirtschaft

MF Marktfrucht
MI Milchvieh

MMTCE Million Metric Tons of Carbon Equivalent
N-Surp Szenario Stickstoffüberschussabgabe

NIR Treihbausgasinventarbericht

N<sub>2</sub>O Lachgas

PMP Positive Mathematische Programmierung

RAUMIS Regionalisiertes Agrar- und Umweltinformationssystem

TBN Testbetriebsnetz
THG Treibhausgas

THG-E Treibhausgas-Emission
UBA Umweltbundesamt

UNFCCC United Nations Framework Convention on Climate Change

VE Veredlung