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Abstract

To meet the increasing global demand of usable energy and mobility, the
combustion of fossil as well as renewable fuels in multifarious applications such
as power plants, vehicles, airplanes, industrial furnaces, and household heating
systems, is of utmost importance. Pivotal targets for the development of
next-generation, high-fidelity combustion devices are the enhancement of the
energy efficiency, applicability to alternative fuels and combustion strategies,
and the reduction of pollutant emissions, in particular soot emissions due to
their adverse impact on the environment as well as human health.
Computational Fluid Dynamics simulations have been established as an
integral part of the development process of modern combustion applications.
With increasing computing capacities and focus on pollutant emissions, the
interest in Large-Eddy Simulations (LES) is growing. In particular, the accu-
racy of simulations of soot formation in turbulent flames largely benefits from
the resolution of large-scale turbulent fluctuations in LES. However, a further
exploitation of the predictive potential of LES requires the improvement of a
variety of submodels that an integral soot model is composed of as well as
appropriate coupling strategies for these model components. Furthermore,
methodologies are needed for the systematic analysis of integrated models to
identify critical modeling assumptions regarding the overall performance.
The present thesis aims at contributing to both the systematic analysis of
integrated LES models for soot evolution and the development of submodels
of such integrated modeling suites. The first part of the thesis focuses on the
assessment and development of moment methods for the solution of population
balance equations governing the soot particle dynamics. A combined a-priori
and a-posteriori analysis of different interpolation-based moment methods
led to recommendations for an optimal choice of interpolation functions and
orders to achieve highly accurate soot predictions for a variety of laminar
and turbulent flame conditions. In addition, an advanced quadrature-based
moment method, which also provides a reconstruction of an approximation
of the soot Number Density Function (NDF), was coupled with a method
to describe the disappearance of particles during soot oxidation in a math-
ematically rigorous manner. Furthermore, a multivariate physico-chemical
soot model accounting for the diversity of the chemical composition of soot
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particles was formulated and validated for the evolution of the NDF in a
laminar flame.

Next, the propagation of errors related to flamelet assumptions into soot
quantities was investigated taking advantage of large-scale Direct Numerical
Simulation (DNS) data of a sooting turbulent jet flame. Various terms cou-
pling flamelet-based combustion models with soot models were first analyzed
a-priori. Then, a partial a-posteriori analysis was performed, where the soot
evolution along Lagrangian trajectories was computed using the flow field and
selected thermodynamic properties extracted from the DNS. The resulting
error decomposition and quantification identified the modeling of polycyclic
aromatic hydrocarbon-based soot growth processes to be associated with
uncertainties of leading order. Eventually, LES of a model aircraft combustor
were performed employing a flamelet combustion model and a state-of-the-art
soot model based on a bivariate description of the soot particles.
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Zusammenfassung

Um den weltweit steigenden Bedarf an nutzbarer Energie und Mobilitdt zu
decken, ist die Verbrennung von fossilen sowie erneuerbaren Brennstoffen
in vielfaltigen Anwendungen wie Kraftwerken, Fahrzeugen, Flugzeugen, In-
dustrieéfen und Haushaltsheizungen von grofier Bedeutung. Hauptziele fir
die Entwicklung von Verbrennungsanlagen der néchsten Generation sind die
Verbesserung der Energieeffizienz, die Kompatibilitdt mit alternativen Kraft-
stoffen und Verbrennungsstrategien sowie die Reduzierung von Schadstoff-
emissionen, insbesondere von Ruflemissionen, da diese mit starken negativen
Einfliissen auf die Umwelt und die menschliche Gesundheit einhergehen.

Stréomungssimulationen haben sich als integraler Bestandteil des Entwick-
lungsprozesses moderner Verbrennungsanwendungen etabliert. Mit zuneh-
mender Rechenleistung und Fokussierung auf Schadstoffemissionen wachst das
Interesse an Large-Eddy Simulationen (LES). Insbesondere die Genauigkeit
der Vorhersage von Rufibildung in turbulenten Flammen profitiert erheblich
von der Auflésung grofiskaliger turbulenter Fluktuationen in LES. Eine weitere
Verbesserung der Pradiktivitat von LES in Bezug auf Rufibildung erfordert die
Verbesserung einer Vielzahl von Modellkomponenten, aus denen ein integrales
RuBmodell besteht, sowie geeignete Kopplungsstrategien dieser Modellkom-
ponenten. Dariiber hinaus werden Methoden fiir die systematische Analyse
integrierter Modelle benotigt, um kritische Modellierungsannahmen beziiglich
der Genauigkeit des Gesamtmodells zu identifizieren.

Gegenstand dieser Arbeit ist sowohl die systematische Analyse integrierter
Rufimodelle fiir LES als auch die Entwicklung von Modellkomponenten solcher
integrierter Modelle. Fokus des ersten Teils der Arbeit bildet die Analyse und
Entwicklung von Momentenmethoden zur Losung von die Ruipartikeldynamik
beschreibenden Populationsbilanzgleichungen. Durch eine kombinierte a-priori
und a-posteriori Analyse verschiedener interpolationsbasierter Momentenme-
thoden konnten Empfehlungen fiir eine optimale Wahl von Interpolationsfunk-
tionen und -ordnungen abgeleitet werden, welche hochgenaue Vorhersagen der
Rufbildung in laminaren und turbulenten Flammen ermoglichen. Dariiber
hinaus wurde eine neuartige quadraturbasierte Momentenmethode, welche
auch eine Rekonstruktion einer Approximation der Ruflpartikelverteilungs-
funktion ermdglicht, mit einem numerischen Verfahren zur Beschreibung des
Verschwindens von Partikeln wiahrend der Rufloxidation gekoppelt. Weiter-



hin wurde ein multivariates physikalisch-chemisches Ruimodell formuliert,
welches die starke Diversitédt der chemischen Zusammensetzung von Ruflpar-
tikeln berticksichtigt. Dieses Modell wurde fiir die zeitliche Entwicklung der
Partikelverteilungsfunktion in einer laminaren Flamme validiert.

Im weiteren Verlauf der Arbeit wurde der Einfluss von auf Flamelet-
Annahmen beruhenden Modellfehlern auf die Berechnung von Ruflgrofien
mittels systematischer Analyse von Direkten Numerischen Simulationen (DNS)
einer rufenden turbulenten Freistrahlflamme untersucht. Zunéchst wurden
verschiedene Grofien, welche Flamelet-basierte Verbrennungsmodelle mit Ruf3-
modellen koppeln, a-priori analysiert. Anschliefend wurde eine partielle
a-posteriori-Analyse durchgefiithrt. Hierbei wurde die Ruflbildung entlang
Lagrangescher Trajektorien nachgerechnet, wobei das Stromungsfeld sowie
ausgewahlte thermodynamische Grofien aus der DNS extrahiert wurden. Mit-
tels der aus dieser Analyse resultierenden Fehlerzerlegung und -quantifizierung
konnte die Modellierung von auf polyzyklischen aromatischen Kohlenwasser-
stoffen basierenden RuBwachstumsprozessen als Fehlerquelle fiihrender Ord-
nung identifiziert werden. Weiterhin wurden LES einer Modellbrennkammer
eines Flugtriebwerks unter Verwendung eines Flamelet-Verbrennungsmodells
sowie eines auf einer bivariaten Beschreibung der Rufipartikel basierenden
Rufimodells durchgefiihrt.
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