
Location Planning of Charging Stations for Electric City Buses

Brita Rohrbeck

Location Planning of Charging Stations for Electric City Buses

Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der Fakultät für Wirtschaftswissenschaften des Karlsruher Instituts für Technologie

angenommene

DISSERTATION

von

Dipl.-Math. Brita Rohrbeck

Tag der mündlichen Prüfung: 19. Februar 2018

Referent:

Korreferent:

Prof. Dr. Stefan Nickel

Prof. Dr. Natalia Kliewer

Karlsruhe, Januar 2018

Operations Research

Brita Rohrbeck

Location Planning of Charging Stations for Electric City Buses

Shaker Verlag Düren 2019

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2018

Copyright Shaker Verlag 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6654-8 ISSN 1862-6327

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgements

This work is about being on the road. It is characterised and driven by travelling, sometimes detours or changing direction. Every slowdown on rough terrain was followed by new speed, though—often even increased thanks to the support of my supervisor and colleagues, my friends and family.

I am grateful for all motivation and suggestions, for every question and doubt, for all the help and succour. Every challenge also gave me the opportunity to grow and gain new experience. I appreciate the trust and the great latitude I was always allowed as well as the flexibility and the funding that enabled me to broaden my horizon, to discover new areas and to gain new insights.

Thanks to everybody who encouraged and supported or sometimes just distracted me. Thanks to everybody who simply joined my journey with a smile.

Abstract

Modern urban transportation concepts increasingly involve the usage of electric vehicles, in particular of electric city buses. Many projects on electric private transport are already undertaken, and a lot of investigation is done with respect to advantageously located charging stations for the individual traffic. Examinations on the electrification of bus networks are rare, though.

In the city of Mannheim, Germany, the bus line 63 has recently been electrified. Customers are now served with contactless charging buses. Along the route of line 63, charging stations are installed. This enables the vehicles to recharge their batteries during the usual service, when halting at bus stops or during breaks at termini. The solution that has been implemented in Mannheim was determined on the basis of experiences and estimations of the local transport services *Rhein-Neckar-Verkehr*. Models from the area of operations research were not applied. This fact suggests to assume potential for improvement of the implemented solution. The realised configuration of line 63 in Mannheim shall therefore serve as a reference in this work. The aim is to develop a model, based on the conditions of line 63, to validate the model with real-world data and to enhance it for further investigation.

In this work, a basic mixed-integer linear model is presented in order to determine a cost-optimal distribution of charging stations for one bus line. This model is reformulated in favour of smaller computational times. Both, the initial and the reduced model, are enhanced by different features: The possibility of various types of batteries is integrated, different charging technologies may be employed, and the option of an additional bus is given.

Subsequently, the approach is extended from just one bus line towards a network of lines. Again, two formulations are given, evaluated and also compared with respect to their run times.

Battery ageing has a crucial influence on the feasibility of a solution also in the succeeding years. As a consequence, a multi-period model is introduced and complemented with a battery ageing function. To the initial and a reduced formulation of this more complex problem, valid inequalities are added and examined with respect to their effectiveness.

The models are applied to data sets, which are based on real-world data of the bus network of Mannheim. They are solved with CPLEX. Various scenarios are drawn to assess the implications and the sensitivity of a solution. The base scenario corresponds to line 63. By means of this reference line, the quality of the solutions is verified. For the basic scenario, the determined solution involves one additional charging station. Accordingly, it has higher costs than the solution implemented in Mannheim. However, the realisation in Mannheim turned out to be not feasible. The calculated solution hence excels the applied one. This fact proves the quality of the calculated solution and in turn the validity of the presented models.

Contents

Li	st of	Abbreviations	ix
Li	st of	Figures	vii
\mathbf{Li}	st of	Tables x	xi
Li	st of	Algorithms xx	iii
1	Elec	ctric Urban Bus Networks—State of the Art	1
	1.1	Motivation for Electric Urban Bus Networks	2
	1.2	Different Concepts of Electric Urban Bus Networks	5
	1.3	Battery Ageing	$\overline{7}$
	1.4	E-Bus Projects	9
		1.4.1 E-Bus Projects in Germany	9
		1.4.2 <i>emil</i> and PRIMOVE Mannheim	12
		1.4.3 E-Bus Projects in Europe and Worldwide	14
	1.5	Further Literature	16
2	Unc	lerlying Data	23
	2.1	Description of the Project PRIMOVE Mannheim	24
		2.1.1 Rhein-Neckar-Verkehr GmbH	26
		2.1.2 Bus Line 63 of rnv in Mannheim	27
		2.1.3 Characteristics of the Bombardier PRIMOVE	
		Buses	29
		2.1.4 Characteristics of the Bombardier PRIMOVE	
		Charging Stations	30

	2.2	Paran	neters Derived from PRIMOVE Mannheim and		
		Line 6		32	
		2.2.1	Energy Consumption	34	
		2.2.2	Energy Supply	38	
		2.2.3	Fixed Costs	40	
		2.2.4	Synergies in Usage of Charging Stations	42	
		2.2.5	Constructional Restrictions and Further Stopping		
			Options	42	
3	Loc	ation	Configuration for One Electric City Bus		
	\mathbf{Lin}			45	
	3.1		lling the Charging Stations Location Problem for		
			Bus Line	46	
		3.1.1	Sets of Indices	46	
		3.1.2	Decision Variables	48	
		3.1.3	Parameters	49	
		3.1.4	Model: Charging Stations Location Problem	51	
	3.2		cing the Model	55	
	3.3	Exten	ding the CSLP by Different Technology Options $% \mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}($	57	
		3.3.1	Incorporating Different Battery Types	58	
		3.3.2	Incorporating Different Charging Technologies .	59	
		3.3.3	Model: CSLP with Different Technology Options	$\begin{array}{c} 60 \\ 63 \end{array}$	
	3.4	Addit	lditional E-Bus vs. Dense Charging Infrastructure .		
		3.4.1	Decision Variables, Parameters and Modification	63	
		3.4.2	Model: CSLP with an Optional Auxiliary Bus .	66	
	3.5		sation in Mannheim	70	
	3.6	Comp	utational Tests	74	
		3.6.1	Basic Scenario with Average Values	77	
		3.6.2	Sensitivity to a Temporary Failure of a Charging		
			Station	81	
		3.6.3	Minor Change in Timetables	83	
		3.6.4	Worst Case Scenario	85	
		3.6.5	Possibility of an Auxiliary Bus	87	
		3.6.6	Current Technologies	90	
		3.6.7	Future Technologies	93	
		3.6.8	Run Times	95	

4	Net	work	Configuration for Electric City Buses	99	
	4.1	Model	lling the Charging Stations Location Problem for a		
		Netwo	prk	100	
		4.1.1	Sets of Indices	101	
		4.1.2	Decision Variables	105	
		4.1.3	Parameters	105	
		4.1.4	Model: Charging Stations Location Problem for		
			a Network	106	
	4.2	Reduc	$\operatorname{eing} \operatorname{the} \operatorname{Model} \ldots \ldots$	111	
	4.3		ding the <i>CSLPN</i> by Different Technology Options	112	
	4.4	Comp	utational Tests	117	
		4.4.1	Data Derivation	117	
		4.4.2	Network Configuration with Current Technolo-		
			gies	123	
		4.4.3	Network Configuration with Future Technologies	125	
		4.4.4	Run Times	127	
5	Incorporating Battery Ageing				
	5.1	Neces	sity to Consider Battery Ageing in the CSLP	131	
	5.2	Model	lling the CSLP with Battery Ageing	136	
		5.2.1	Decision Variables	136	
		5.2.2	Parameters	138	
		5.2.3	Model: Charging Stations Location Problem with		
			Battery Ageing	138	
	5.3	Reduc	$\operatorname{eing} \operatorname{the} \operatorname{Model} \ldots \ldots$	146	
	5.4	Auxili	ary Decision Variables and Valid Inequalities	153	
		5.4.1	Auxiliary Decision Variables	153	
		5.4.2	Valid Inequalities	155	
	5.5	Comp	utational Tests	156	
		5.5.1	Basic Scenario with Average Values and Realistic		
			Ageing Factor	157	
		5.5.2	Basic Scenario with Average Values and Opti-		
			mistic Ageing Factor	159	
		5.5.3	Basic Scenario with Average Values and Two		
			Pessimistic Ageing Factors		
		5.5.4	Run Times	160	

6	Conclusion 6.1 Summary								
Ap	Appendix								
Α	A.1 Input Basic Model Scenario 1	175							
	B.1 Collected Data B.2 rnv	181 181 185 197							
Bibliography									