Werkstofftechnik

Gregor Manke

Local Hydrogen Analysis – mobile Analysemethode zum zerstörungsfreien Nachweis von Wasserstoff in Stahl

Local Hydrogen Analysis – mobile Analysemethode zum zerstörungsfreien Nachweis von Wasserstoff in Stahl

Dissertation zur Erlangung des Grades Doktor-Ingenieur

der Fakultät für Maschinenbau der Ruhr-Universität Bochum

von

Gregor Manke

aus Hagen

Bochum, Oktober 2019

Dissertation eingereicht am: 21.08.2019

Tag der mündlichen Prüfung: 21.10.2019

Erstgutachter: Prof. Dr.-Ing. Michael Pohl

Zweitgutachter: Prof. Dr.-Ing. Werner Theisen

Berichte aus der Werkstofftechnik

Gregor Manke

Local Hydrogen Analysis – mobile Analysemethode zum zerstörungsfreien Nachweis von Wasserstoff in Stahl

Shaker Verlag Düren 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2019

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7070-5 ISSN 0945-1056

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand neben meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrgebiet Werkstoffprüfung der Ruhr-Universität Bochum.

Mein besonderer Dank gilt Prof. Dr.-Ing. Michael Pohl für die Möglichkeit zur Promotion in einem sehr spannenden und praxisnahen Umfeld mit großen Freiheiten bei der Entwicklung und Umsetzung des Dissertationsthemas. Herrn Prof. Dr.-Ing. Werner Theisen danke ich für die Übernahme des Korreferats. Auch Herrn Prof. Dr.-Ing. Viktor Scherer danke ich für die Übernahme des Prüfungsvorsitzes.

Den Herren Dr.-Ing. Sebastian Kühn und Dr.-Ing. Fabian Unterumsberger danke ich für die vielfältige Unterstützung zu Beginn meiner wissenschaftlichen Tätigkeit. Für die vielen fachlichen Diskussionen möchte ich auch Dr.-Ing. Marina Knyazeva, Dr.-Ing. Alexander Luithle und M. Sc. Jens Jürgensen danken, der auch mit seiner Masterarbeit zum Gelingen dieser Dissertation beigetragen hat. Zu erwähnen sind auch Norbert Lindner, Christian Gramann und Jürgen Rotzing für die experimentelle Unterstützung. Den Studenten Stephan Rath, Florian Binner, Nadine Lenz, David Kniep und Selim Aksoy gilt ebenfalls mein Dank.

Schließlich danke ich meiner Familie für ihre Unterstützung und Motivation, die Dissertation zu einem erfolgreichen Ende zu bringen. Besonderer Dank gilt meiner Frau Christina und meinen Töchtern Neele und Nieke für die Geduld und ihr Verständnis, gerade in der Endphase der Arbeit.

Kurzfassung

In der Technik gibt es den Trend zur Verwendung von immer hochfesteren Stählen mit Zugfestigkeiten über 1000 MPa. Schrauben werden schon bis zu einer Festigkeit von 1600 MPa eingesetzt, Spannstähle mit Festigkeiten über 2000 MPa existieren ebenfalls. Bei diesen hohen Festigkeiten steigt die Gefahr der Wasserstoffversprödung rasant an. Bei plötzlichem Versagen der Bauteile kann es zu katastrophalen Schäden kommen.

Es ist notwendig, sowohl bei der Bauteilherstellung als auch im Betrieb die notwendigen Randbedingungen für einen sicheren Einsatz zu kennen. Hierfür werden vor allem Wasserstoffanalysemethoden wie Hydrogen Collecting Analysis (HCA) und Thermodesorptionsanalyse (TDA) verwendet. Allerdings ist die Probenpräparation zerstörend. Je nach zu analysierenden Bauteilen (Walzen, Schweißnähte etc.) ist der Aufwand hoch.

Aus diesem Grund wird ein zerstörungsfreies und mobiles Verfahren entwickelt. Diese Local Hydrogen Analysis (LHA) erlaubt es, den schädlichen Wasserstoffanteil am Bauteil zu bestimmen. Grundlage dafür ist ein Drei-Elektroden-Aufbau, der den Oxidationsstrom einer Stahloberfläche misst. Dieser Strom ist abhängig vom austretenden Wasserstoff und wird über Diffusionsgesetze in einen Wasserstoffgehalt in ppm umgerechnet. Zur Interpretation und Einordnung der Ergebnisse werden die Stähle 100Cr6 und C60 in jeweils zwei gleichen Festigkeitsklassen und der hochlegierte Stahl X2CrMoTi18-2 untersucht und die Ergebnisse der LHA mit denen der HCA verglichen. In den Grundlagenuntersuchungen zeigt sich, dass mit der HCA identische Ergebnisse erzielt werden, wie sie die Diffusionsgesetze vorhersagen. Die HCA kann somit als Kalibration verwendet werden.

Die in dieser Arbeit entwickelte Auswertemethodik lässt für die LHA weitere Rückschlüsse zu. Bei einer homogenen Wasserstoffverteilung in den Proben ergeben sich mit LHA und HCA die gleichen Wasserstoffgehalte. Werden durch Beladeversuche Wasserstoffkonzentrationsprofile eingestellt, existieren im oberflächennahen Randbereich höhere Wasserstoffgehalte als in der Bauteilmitte. Mit der LHA lässt sich die-

ser Unterschied auflösen. Die vergleichende HCA erlaubt nur eine integrale Konzentrationsbestimmung. Mit der Kenntnis der Wasserstoffprofile lässt sich aus den Messdifferenzen von LHA und HCA die Messtiefe bestimmen, aus der diffusibler Wasserstoff mit der LHA gemessen wird. Abhängig vom Diffusionskoeffizienten des Materials ergeben sich Messtiefen von ca. 0,2 bis 1,0 mm. Dabei liegt die Reproduzierbarkeit bei < 0,1 ppm und damit in der Größenordnung konventioneller, integraler Analysemethoden.

Inhaltsverzeichnis III

Inhaltsverzeichnis

1	Einleitung	1
2	Theoretische Grundlagen und Stand der Technik	3
2.1	Wasserstoffherkunft und -aufnahme in Stählen	3
2.1.1	Wasserstoffquellen	3
2.1.2	Aufnahme aus dem Elektrolyten	6
2.1.3	Aufnahme aus der Gasphase	8
2.2	Wechselwirkung des Wasserstoffs mit Metallen	9
2.2.1	Löslichkeit von Wasserstoff	9
2.2.2	Interaktion mit Zwischengitterplätzen	12
2.2.3	Interaktion mit Fallen	13
2.2.4	Diffusion	16
2.2.5	Einfluss von Gefüge und Legierungselementen	21
2.3	Schäden durch Wasserstoff	24
2.3.1	Flocken und Fischaugen	24
2.3.2	verzögerte Rissbildung	25
2.3.3	White Etching Cracks	29
2.4	Schädigungsmechanismen	32
2.5	Wasserstoffanalytik	35
2.5.1	Hydris	35
2.5.2	Trägergas-Schmelzextraktion	36
2.5.3	Trägergas-Heißextraktion	36
2.5.4	Thermodesorptions analyse	37
2.5.5	Gaschromatographie	38
2.5.6	Hydrogen Collecting Analysis	39
2.5.7	Kelvinsonde	40
2.5.8	Verfahren zur Tiefen-Auflösung	41
2.5.9	Silberdekoration	41
2.5.10	Festkörpersensoren	42

IV Inhaltsverzeichnis

2.5.11	elektrochemische Methoden	43
3	Problemstellung und Ziel der Arbeit	51
4	Versuchswerkstoffe	53
4.1	Probenmaterial	53
4.2	Wärmebehandlung	54
5	Experimentelle Methoden	57
5.1	Metallkundliche Charakterisierung	57
5.1.1	Chemische Zusammensetzung	57
5.1.2	Metallographie	57
5.2	Permeation	58
5.2.1	Messaufbau	58
5.2.2	Probenpräparation	58
5.2.3	Durchführung und Auswertung	60
5.3	Wasserstoffbeladung	61
5.4	Wasserstoffauslagerung	61
5.5	Thermodesorptions analytik	63
5.6	Hydrogen Collecting Analysis	63
5.7	Local Hydrogen Analysis	66
5.7.1	Konstruktion der Local Hydrogen Analysis	66
5.7.2	Probenvorbereitung	71
5.7.3	Auswertung	71
6	Ergebnisse	75
6.1	Werkstoffcharakterisierung	75
6.1.1	Gefüge und Härte	75
6.1.2	elektrochemische Charakterisierung	78
6.2	Thermodesorptions analyse	80
6.3	Wasserstoffdiffusion	84
6.3.1	Permeationsmessungen	84
6.3.2	Berechnung der Diffusionstiefe	86
6.4	Hydrogen Collecting Analysis (HCA)	94
6.4.1	Blindwerte	94
6.4.2	Wasserstoffeinfluss	95

Inhaltsverzeichnis V

6.4.3	Vergleich der Messwerte mit den errechneten Füllgraden	99
6.5	Local Hydrogen Analysis (LHA)	101
6.5.1	Blindwerte	101
6.5.2	Wasserstoffeinfluss	103
6.5.3	Wasserstoffeinfluss nach Auslagerung	106
6.5.4	Vergleich der unterschiedlichen Beladeprofile	108
6.6	Vergleich von HCA und LHA	109
7	Diskussion	115
7.1	Probenmaterial	115
7.2	Wasserstoffanalytik	117
7.2.1	Hydrogen Collecting Analysis	117
7.2.2	Local Hydrogen Analysis	119
7.3	Diffusionstiefe	123
7.4	Vergleich von HCA und LHA	125
8	Anwendung in der Praxis	129
8.1	Messungen an Wälzlagerringen	129
8.2	Wasserstoffmessungen an einer Laserschweißnaht	133
8.3	Messungen an einer Walze	136
9	Zusammenfassung und Ausblick	141

Nomenklatur

Symbole

c_a	Anfangskonzentration	[ppm]
c_e	Endkonzentration	[ppm]
c_H	Wasserstoffkonzentration	[ppm]
D_0	Diffusionskonstante	$[cm^2/s]$
D_H	Diffusionskoeffizient von Wasserstoff	$[cm^2/s]$
E_B	Bindungsenergie	$\left[\frac{kJ}{mol}\right]$
F	Faraday-Konstante	$\left[\frac{As}{mol}\right]$
I	Strom	[A]
p_{H_2}	Wasserstoffpartialdruck	[mbar]
R	allg. Gaskonstante	$\left[\frac{kJ}{molK}\right]$
S	Sievertsche Löslichkeitskonstante	$\left[\frac{ppm}{\sqrt{bar}}\right]$
T	Temperatur	[K]
t	Zeit	[s]
U	Spannung	[V]
x	Weg	[mm]
z	Elektronenzahl	
ррт	parts per million	
ppt	part per trillion	
α	Alpha-Eisen (kubisch raumzentriert)	
γ	Gamma-Eisen (kubisch flächenzentriert)	
ΔG^0	Aktivierungsenergie von Wasserstoff	$\left[\frac{kJ}{mol}\right]$

VIII Nomenklatur

Abkürzungen

GD-OES Glimmentladungsspektrometrie
HCA Hydrogen Collecting Analysis
kfz kubisch flächenzentriert
krz kubisch raumzentriert
LHA Local Hydrogen Analysis
SHE Standardwasserstoffelektrode
TDA Thermodesorptionsanalyse

TDS Thermodesorptionsspektrometrie

tof-SIMS time-of-flight Sekundärionenmassenspektrometrie