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Abstract

Adaptive lenses allow for compact, fast and inertia-free axial scanning and therefore are
increasingly employed in numerous microscopic techniques, such as confocal microscopy,
two-photon microscopy, structured illumination microscopy and light sheet microscopy.
However, these complex optical systems can only be dimensioned for one specific focal
length of the tunable lens. When the lens is used for axial scanning, not only the focus
position is axially moved, but additional aberrations are induced leading to a deteriorating
spatial resolution due to focal spot broadening. The placement of the tunable lens into the
optical system in a non-imaging way, which is often done either by geometrical constraints
or to increase the axial tuning range, magnifies this effect even further.

In the scope of this thesis, methods to model, minimize and actively compensate these
induced aberrations were investigated with a focus on confocal microscopy. As an exam-
ple of a camera-based microscope, additionally a novel hybrid illumination microscope
employing a tunable lens for fast volumetric measurements was developed and character-
ized. In a confocal microscope, the use of a second tunable lens in the detection path to
compensate aberrations due to the non-imaging placement of the tunable lens for axial
scanning of the focus is discussed. While this approach was found to be sufficient for
specific configurations, spherical aberrations due to incomplete illumination of the objec-
tive lens or due to the tunable lens itself cannot be corrected. For this purpose, a novel
bi-actuator adaptive lens was used to manipulate the wavefront with an additional degree
of freedom. A control strategy was developed for the bi-actuator adaptive lens to allow
the independent tuning of defocus and induced spherical aberrations. For axial scanning
in free space with a confocal microscope, the diffraction-limited range was increased by
a factor of almost two from 78 um to 150 um by spherical aberration correction. Beyond
that, the additional degree of freedom of the bi-actuator adaptive lens was used to com-
pensate specimen-induced aberrations. As a result, the axial resolution at measurements
inside a phantom specimen was increased by a factor of up to 3 and the specimen-induced
aberrations were corrected to propagation depths up to 340 pm. To demonstrate the
procedure in biological specimens, the bi-actuator lens was used for spherical aberration
correction at measurements of zebrafish embryos with reporter-gene-driven fluorescence
in the thyroid gland resulting in increased contrast and enhanced fluorescence signal. Due
to the improved optical sectioning, substructures of the thyroid follicles were observable,
which were not visible without the spherical aberration correction.

While the presented methods for aberration correction employing the bi-actuator adaptive
lens were realized at the example of a confocal microscope, they can be employed in
several microscopic techniques. In particular, point-scanning techniques such as two-
photon and Brillouin microscopy are expected to benefit from this approach. Spherical
aberration correction employing the bi-actuator adaptive lens promises to bridge a gap in
the currently available adaptive optics toolset.
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