

Berichte aus dem Institut für Fertigungstechnik und Qualitätssicherung Magdeburg

Abrichten keramisch gebundener Schleifscheiben mit CVD-Diamant-Formrollen

Timo Rouven Kaul

Band 46

Shaker Verlag

Abrichten keramisch gebundener Schleifscheiben mit CVD-Diamant-Formrollen

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von M.Eng. Timo Rouven Kaul geb. am 03.05.1988 in Hildesheim, genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr.-Ing. habil. Prof. h.c. Dr. h.c. Dr. h.c. Bernhard Karpuschewski Prof. Dr.-Ing. Jan Christian Aurich Prof. Dr.-Ing. Tjark Lierse

Promotionskolloquium am 09.09.2019

Berichte aus dem Institut für Fertigungstechnik und Qualitätssicherung Magdeburg

Band 46

Timo Rouven Kaul

Abrichten keramisch gebundener Schleifscheiben mit CVD-Diamant-Formrollen

Shaker Verlag Düren 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Magdeburg, Univ., Diss., 2019

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7012-5 ISSN 1863-0936

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Fachgebiet Werkzeugmaschinen, Fertigung, Montage & Qualität (WFM) an der Hochschule Hannover. Teile dieser Arbeit wurden durch das Bundesministerium für Wirtschaft und Energie mit Unterstützung der AIF-Projekt GmbH finanziell unterstützt.

Herrn Prof. Dr.-Ing. habil. Prof. h.c. Dr. h.c. Dr. h.c. Bernhard Karpuschewski, dem ehemaligen Leiter des Institutes für Fertigungstechnik und Qualitätssicherung (IFQ) der Otto-von-Guericke-Universität Magdeburg sowie jetzigem Direktor des Leibniz-Instituts für Werkstofforientierte Technologien (IWT) und Leiter des Fachgebietes Fertigungstechnik an der Universität Bremen, danke ich ganz herzlich für den fachlichem Rat, die intensive Betreuung und wertvollen Anregungen sowie die wohlwollende Förderung dieser Arbeit.

Herr Prof. Dr.-Ing. Tjark Lierse, der Leiter des Fachgebietes Werkzeugmaschinen, Fertigung, Montage & Qualität der Hochschule Hannover, hat mich fachlich und persönlich stets gefördert und mit seinem wissenschaftlichem Rat entscheidend zum Erfolg dieser Arbeit beigetragen.

Herrn Prof. Dr.-Ing. Jan Christian Aurich, dem Leiter des Lehrstuhls für Fertigungstechnik und Betriebsorganisation (FBK) der Technischen Universität Kaiserslautern, danke ich ganz herzlich für die Durchsicht und die Übernahme des Korreferats sowie den weiteren Mitgliedern des Prüfungsausschusses.

Darüber hinaus bin ich unserem Kooperationspartner DR. KAISER DIAMANTWERKZEUGE GmbH & Co. KG für die Unterstützung bei der Entstehung dieser Arbeit sehr dankbar. Stellvertretend seien Dr.-Ing. Dirk Hessel, Thomas Maelecke, Ing. Christoph Müller, Dipl.-Ing. Christian Kühl sowie Jan Gerbothe genannt. Herrn Dipl.-Chem. Manfred Niebuhr der KREBS & RIEDEL SCHLEIFSCHEIBENFABRIK bin ich für die Bereitstellung der chargenreinen Werkzeuge und Schleifmittel sehr verbunden. Dank gilt auch meinen Kollegen der Hochschule Hannover, insbesondere Herrn M.Sc. Steffen Schulze, Herrn Dipl.-Ing. (FH) Dietrich Müller, Herrn Dipl.-Ing. (FH) Grégori Briegert, Frau Dipl.-Ing. (FH) Andrea Rohrig sowie Herrn Dipl.-Ing (FH) Frank Languth für die fachlichen Hinweise, Diskussionen und die großartige Unterstützung. Die Kollegen der Otto-von-Guericke-Universität Magdeburg haben mich mit ihrer intensiven Zusammenarbeit in der Forschung unterstützt. Stellvertretend sei Herr Dr.-Ing. Florian Welzel, Oberingenieur am Institut für Fertigungstechnik und Qualitätssicherung (IfQ), Dipl.-Ing. Martin Beutner und Dr.-Ing. Max Köchig genannt.

Meinen ehemaligen studentischen Mitarbeitern M.Eng. Dominik Müller-Cramm, B.Eng. Malte Hanke, B.Eng. Andre Eder, David Keller, B.Eng. Daniel Meyer, Manuel Schmidt, B.Eng. Babak Shahani sowie B.Eng. Daniel Mollowitz danke ich für die Unterstützung bei der Realisierung von Versuchsaufbauten, die zur Umsetzung dieser Arbeit wesentlich beigetragen haben.

Ein besonderer Dank gilt meiner Familie, die meinen schulischen und akademischen Werdegang erst ermöglicht und mich währenddessen immer unterstützt hat. Meiner Partnerin Marnie danke ich für die liebevolle Unterstützung, die diese Arbeit erst ermöglicht hat.

Hannover, den 22.09.2019 Timo Rouven Kaul

Kurzfassung

Formabrichter und konventionelle Schleifscheiben keramischer Bindung werden in der industriellen Praxis häufig für die Klein- und Mittelserienfertigung eingesetzt, sodass die Kontur flexibel an die jeweilige Arbeitsaufgabe angepasst werden kann. Bedingt durch die Weiterentwicklung der Syntheseverfahren in den vergangenen 25 Jahren wird neben Naturdiamanten überwiegend CVD-Diamant für formstabile Abrichtwerkzeuge verwendet. Für eine anforderungsgerechte Schleifscheibentopographie ist eine Kenntnis wirkender Prozessgrößen und -mechanismen zwingend erforderlich.

Im Rahmen dieser Arbeit wird ein kinematisches Modell zur Prognose der Prozesskräfte beim Abrichten mit Formrollen erarbeitet. Basis der Betrachtung ist die geometrisch definierte Gestalt der CVD-Diamanten ohne Freiwinkel, weshalb ein Anteil der Materialtrennung über die Freifläche realisiert wird und entsprechend die Prozesskräfte bestimmt.

Die Kräfte des Abrichtprozesses wiederum nehmen Einfluss auf die Schleifscheibentopographie als Nutzgröße. Ursächlich sind die Mechanismen Kornbruch und -ausbruch, deren Anteil maßgeblich variiert.

In Folge der tribologischen Beanspruchung tritt am Abrichtwerkzeug Verschleiß auf. Das verwendete Schleifmittel übt dabei wesentlichen Einfluss auf diese Verlustgröße aus. Grünes Siliciumcarbid führt im Vergleich zu Korund zu circa neun Mal höheren Verschleißraten am CVD-Diamantwerkzeug. Als Ursache wird der Adhäsivverschleiß vermutet, da die Adhäsion von Partikeln in Kombination mit einer Veränderung der Reibverhältnisse nachgewiesen werden kann. Oxidation und Oberflächenzerrüttung haben bei einer entsprechenden Prozesskühlung einen quantitativ geringeren Einfluss. Stahlspäne erhöhen die Verschleißrate am Abrichtwerkzeug nicht. Eine Graphitisierung am CVD-Diamanten kann nur in Randbereichen bei einer Prozessführung ohne Kühlschmierung ermittelt werden. Mögliche Umwandlungen zu sp²-gebundenem Kohlenstoff auf der Stirnfläche des Diamanten werden durch die abrasive Wirkung des Schleifmittels direkt wieder getrennt und sind folglich nicht nachweisbar.

Abstract

CNC dressing disks and conventional grinding wheels with vitrified bonds are often used in combination for the small batch and middle volume production to gain flexibility by changing the profile. Through the advancement of synthesis in the past 25 years CVD diamonds have become more important beside natural diamonds for the application in dimensionally stable dressing tools. To meet the requirements of the grinding wheel topography knowledge of process variables and mechanisms is needed.

In this thesis a kinematic model for the prediction of the process forces has been developed by the preparation with CNC dressing disks. The results are based on the consideration of the diamond shape, which is geometrical defined without flank angle. Therefore a part of the material removal is realized by the flank face, which affects the process forces.

In turn the forces of the dressing process determine the grinding wheel topography as a benefit variable. The mechanism of grit splintering and breakout is causal, which rates mainly differ.

Regarding the process as a tribological system the dressing tool underlies wear. The used abrasives heavily influence this loss variable. Green silicon carbide causes approximately nine times higher wear rates than corundum by dressing with CVD diamond. Through the adhesion of particles and friction changes the adhesive wear is assumed as a reason. Oxidation and surface disruption slightly affect the attrition by supplying sufficient cooling lubricant. Added steel chips had no influence on the wear rate. A graphitization can only be proven on the edge of the CVD diamond conducting the dressing process without cooling lubricant. Therefore a possible transformation to sp² carbon sites is removed on front side by the abrasives and cannot be detected as a consequence.

Inhaltsverzeichnis

D	DanksagungI		
κ	KurzfassungIII		
A	AbstractV		
In	InhaltsverzeichnisVII		
F	ormel	zeichen	XI
A	AbkürzungenXVII		
1		Einleitung	1
2		Stand der Technik	3
2.	1	Aufbau keramisch gebundener Schleifscheiben	3
	2.1.1	Schleifmittel	4
	2.1.2	Keramische Bindung	6
2.	2	Einsatzvorbereitung von Schleifscheiben	7
	2.2.1	Einteilung nach dem Wirkprinzip	8
	2.2.2	Einteilung nach der Verfahrenskinematik und Werkzeugform	. 11
	2.2.3	Einteilung nach sequenzieller und simultaner Prozessausführung	. 12
2.	3	Aufbau und Einsatzgebiete von Formrollen	. 13
	2.3.1	Diamantarten und -formen	. 14
	2.3.2	Abrichtbelag und Diamantierung	. 15
	2.3.3	Bindungssysteme	. 17
2.	4	Mechanisches Abrichten mit Formwerkzeugen	. 18
	2.4.1	Stellgrößen	. 18
	2.4.2	Modellierung des Abrichtprozesses	. 22
	2.4.3	Mechanismen an der Schleifscheibe	. 26
2.	5	Abrichtprozess als tribologisches System	. 27
	2.5.1	Verschleißmechanismen an Diamanten	. 27
	2.5.2	Einfluss des Bindungssystems	. 31
	2.5.3	Prozessführung und Stellgrößen beim Formabrichten	. 32
2.	6	Kritische Einschätzung	. 34
3		Aufgabenstellung und Zielsetzung	. 37
4		Versuchstechnik und -durchführung	. 39

	39
Verwendete Werkzeuge	. 41
Abrichtspindeltechnik	. 43
Prozessmedien	. 44
Analysetechnik	. 45
Aufbau eines Modells für das Abrichten mit CVD-Diamant-Formrolle	n 47
Vorversuche zum Einfluss der Schleifscheibenumfangsgeschwindigkeit	. 47
Anwendbarkeit bestehender Modelle zur Berechnung der Abrichtkräfte	. 51
Theoretische Bestimmung der Eingriffsverhältnisse	. 53
Bahnbewegung	. 53
Eingriffslänge eines Abrichtdiamanten	. 56
Abrichtvolumina pro Diamanteingriff	. 61
Kinematische Kontaktlängen	. 71
Mittlere Spanungsquerschnitte und deren Höhen	. 73
Theoretische Bestimmung der Abrichtkräfte	. 75
Verifizierung des Modells	81
Bestimmung der material- und prozessspezifischen Parameter	. 81
Überprüfung der Modellgüte	05
Oberprurung der Modeligute	85
Zwischenfazit	85 89
Zwischenfazit	85 89 . . 91
Zwischenfazit	85 89 . . 91 92
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel	85 89 91 92 96
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel	85 89 91 92 96 98
Zwischenfazit	85 89 91 92 96 98 98
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern	85 89 91 92 96 98 98 100
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Product Virkzusammenhänge zwischen Stell- und Ausgangsgrößen	85 89 91 92 96 98 98 100 101
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern Wirkzusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit	85 89 91 92 98 98 100 101 102
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern Wirkzusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit	85 89 91 92 96 98 100 101 102 105
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern Wirkzusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit Wirkmechanismen am Abrichtwerkzeug Quantitative Verschleißbetrachtung	85 89 91 92 98 98 100 101 102 105
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern Wirkzusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit Wirkmechanismen am Abrichtwerkzeug Quantitative Verschleißbetrachtung	85 89 91 92 96 98 100 101 102 105 105
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Kornbruch / Splittern Wirkzusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit Wirkmechanismen am Abrichtwerkzeug Quantitative Verschleißbetrachtung Qualitative Verschleißbetrachtung Makroskopische Analyse der Abrichtdiamanten	85 89 92 92 98 100 101 102 105 105 107 108
Zwischenfazit Wirkmechanismen beim Abrichten an der Schleifscheibe Partikeleinordnung Qualitative Analyse der getrennten Bruchpartikel Quantitative Analyse der getrennten Bruchpartikel Kornausbruch Prikkeusammenhänge zwischen Stell- und Ausgangsgrößen Zwischenfazit Wirkmechanismen am Abrichtwerkzeug Quantitative Verschleißbetrachtung Qualitative Verschleißbetrachtung Detailanalyse der Abrichtdiamanten	85 89 91 92 98 98 100 101 102 105 105 107 108 118
	Abrichtspindeitechnik Prozessmedien Analysetechnik Aufbau eines Modells für das Abrichten mit CVD-Diamant-Formroller Vorversuche zum Einfluss der Schleifscheibenumfangsgeschwindigkeit Anwendbarkeit bestehender Modelle zur Berechnung der Abrichtkräfte Theoretische Bestimmung der Eingriffsverhältnisse Bahnbewegung Eingriffslänge eines Abrichtdiamanten Abrichtvolumina pro Diamanteingriff Kinematische Kontaktlängen Mittlere Spanungsquerschnitte und deren Höhen Theoretische Bestimmung der Abrichtkräfte Verifizierung des Modells Bestimmung der material- und prozessspezifischen Parameter

8.4	Einfluss der Prozessmedien	130
8.4.1	Stahlspäne	130
8.4.2	Kühlschmierstoff	133
8.5	Zwischenfazit	136
9	Zusammenfassung und Ausblick	139
	5	
10	Literaturverzeichnis	143
10 11	Literaturverzeichnis	143 165
10 11 11.1	Literaturverzeichnis Anhang Ergänzende Formeln aus der Literatur	143 165 165

Formelzeichen

Lateinische Majuskel

Ad	Eingriffsfläche eines Diamanten nach [Link07]	[µm²]
A _{hd}	mittlerer Abrichtspanquerschnitt nach [Link07]	[µm²]
A _{hd} **	angepasster mittlerer Abrichtspanquerschnitt nach	[µm²]
	[Link07]	
A _{hd,crush}	mittlere Spanungsquerschnitt des Crushieranteils	[mm²]
A _{hd,fr}	mittlere Spanungsquerschnitt des Fräsanteils	[mm²]
A _{sd}	Abrichtquerschnitt nach [Mink99]	[mm²]
F _d	Abrichtkraft	[N]
F _{nd}	gemessene Abrichtnormalkraft	[N]
$F_{nd,m}$	berechnete Abrichtnormalkraft	[N]
F _{td}	gemessene Abrichttangentialkraft	[N]
F _{tdK}	Anteil der Abrichttangentialkraft zum Trennen von	[N]
	Schleifscheibenmaterial	
F _{tdR}	Reibanteil der Abrichttangentialkraft	[N]
F _{td,m}	berechnete Abrichttangentialkraft	[N]
Н	Profilhöhe nach [Schm68]	[µm]
H _{kin}	Höhenkomponente der kinematischen Kontaktlänge	[µm]
$H_{\Delta V d2}$	Hilfsgröße zur Berechnung von ΔV_{d2}	[µm]
K ₁	werkzeugabhängige Konstante nach [Link07]	[-]
K ₂	werkzeugabhängige Konstante nach [Link07]	[µm²]
K _{Ic}	Bruchzähigkeit bzw. Spannungsintensitätsfaktor	[N/mm²⋅m ^½]
L _d	geometrischer (Setz-) Abstand zweier Abrichtdiamanten	[mm]
Ls	kinematischer Abstand zweier nachfolgender Diamant-	[mm]
	eingriffe in der Schleifscheibe	
P'd	bezogene Wirkleistung der Abrichtspindel	[W/mm]
P _{Laser}	eingestellte Laserleistung bei der Raman-Spektroskopie	[mW]
Q' _w	bezogenes Zeitspanvolumen	[mm³/mms]
$\mathbf{Q}_{d,crush}$	Crushieranteil beim Abrichten	[%]
Q _{d,fr}	Fräsanteil beim Abrichten	[%]
Q _{KSS}	Kühlschmierstoffvolumenstrom	[l/min]
R²	Bestimmtheitsmaß	[-]
R _d	Profilrundungsradius des Abrichtwerkzeugs	[mm]

R _{theo}	theoretische Rautiefe der Schleifscheibe nach [Schu97]	[µm]
R _{ts}	Wirkrautiefe nach [Pahl53]	[µm]
S _{statR}	Anzahl der Diamantkörner am Abrichtrollenumfang	[-]
U _d	Überdeckungsgrad	[-]
$U_{d,max}$	maximal sinnvoller Überdeckungsgrad nach [Mess83]	[-]
V' _w	bezogenes Zerspanvolumen	[mm³/mm]
$V_{d,crush}$	Crushieranteil des abgerichteten Materialvolumens	[µm³]
	eines Diamanteingriffs	
$V_{d,F}$	Volumina der Bahnflanken	[µm³]
$V_{d,fr}$	Fräsanteil des abgerichteten Materialvolumens eines	[µm³]
	Diamanteingriffs	
$V_{d,G}$	Volumenanteil des Bahngrundes	[µm³]
V _{d,ges}	gesamtes abgerichtete Materialvolumen eines	[µm³]
	Diamanteingriffs	
V_{sd}	abgerichtetes Schleifscheibenvolumen	[cm ³]
Vsd ARKorn	abgerichtetes Volumen pro Abrichtkorn nach [Link07]	[mm³]
W _{d,l/V}	Verschleißrate am Abrichtdiamanten	[µm/cm³]
W _{theo}	theoretische Schleifscheibenwelligkeit in axialer	[mm]
	Richtung nach [Verk79]	

Lateinische Minuskel

a _{ed}	Abrichtzustellung je Abrichthub	[µm]
a _{ed,ges}	Abrichtgesamtzustellung	[µm]
b _d	Wirkbreite des Abrichtwerkzeugs	[mm]
d _d	Außendurchmesser der Abrichtrolle	[mm]
d _{deq}	Äquivalenzdurchmesser der Abrichtrolle	[mm]
ds	Schleifscheibendurchmesser	[mm]
$e_1 - e_4$	werkzeugabhängige Exponenten nach [Link07]	[-]
f _{ad}	axialer Vorschub je Schleifscheibenumdrehung beim	[mm]
	Abrichten	
f _{ad0}	1 mm axialer Vorschub je Schleifscheibenumdrehung	[mm]
	beim Abrichten	
f _{rd}	radialer Vorschub je Schleifscheibenumdrehung beim	[µm]
	Abrichten	

$\mathbf{h}_{hd,crush}$	mittlere Höhe des Spanungsquerschnitts des	[mm]
	Crushieranteils	
h _{hd,crush0}	1 mm mittlere Höhe des Spanungsquerschnitts des	[mm]
	Crushieranteils	
h _{hd,fr}	mittlere Höhe des Spanungsquerschnitts des Fräsanteils	[mm]
h _{sd}	Höhe des Diamanten im Eingriff	[mm]
h _{sd,A}	Höhe des Diamanten am Austrittspunkt	[mm]
h _{sd,E}	Höhe des Diamanten am Eintrittspunkt	[mm]
i _d	Anzahl der Abrichthübe	[-]
i _{dd}	Anzahl der Diamanten auf der Formrolle	[-]
i _{sd}	Anzahl der Eingriffe der Formrollen-Diamanten auf der	[-]
	Schleifscheibe	
k _{d1,1}	spezifische Abrichtkraft bezogen auf einen Querschnitt	[N/mm²]
	von 1 x 1 mm²	
l _d	Länge der Diamanten/Diamantkörner in Umfangsrichtung	[mm]
IF	Länge der Bahnflanke der Eingriffsbahn eines	[mm]
	Diamanten	
l _G	Länge des Bahngrundes der Eingriffsbahn eines	[mm]
	Diamanten nach [Schu97]	
l _{ges}	Gesamtlänge einer Diamanteingriffsbahn nach	[mm]
	[Schu97, Link07]	
l _{gd}	geometrische Kontaktlänge der Abrichtrolle nach	[mm]
	[Link07]	
l _{kd}	kinematische Abrichtkontaktlänge nach [Link07]	[mm]
l _{kin}	kinematische Kontaktlänge des Abrichtdiamanten	[mm]
I _{kin,crush}	kinematischen Kontaktlänge des Crushieranteils	[mm]
I _{kin,fr}	kinematischen Kontaktlänge des Fräsanteils	[mm]
I _{kin,U}	Umfangskomponente der kinematischen Kontaktlänge	[mm]
I _{Rtheo}	Länge zur Berechnung der theoretischen Rautiefe R _{theo}	[mm]
m _d	Abrichtexponentialkoeffizient	[-]
n _d	Abrichtrollendrehzahl	[min ⁻¹]
n _s	Schleifscheibendrehzahl	[min ⁻¹]
q _d	Abrichtgeschwindigkeitsverhältnis	[-]
r _d	Radius der Abrichtrolle	[mm]

r _{dd}	Radius der Abrichtrolle, Nomenklatur der Modellbildung	[mm]
r _s	Radius der Schleifscheibe	[mm]
$\overrightarrow{r_{sd}}$	Vektor der Drehbewegung im System Schleifscheibe -	[mm]
	Abrichtrolle bezogen auf einen Punkt am Umfang der	
	Abrichtrolle	
r _{sg}	Gesamtradius von Schleifscheibe und Abrichtrolle	[mm]
r _{ss}	Radius der Schleifscheibe nach dem Abrichten	[mm]
r _{ss0}	Ausgangsradius der Schleifscheibe	[mm]
V _{fad}	axiale Vorschubgeschwindigkeit beim Abrichten	[mm/min]
V _{frd}	radiale Vorschubgeschwindigkeit beim Abrichten	[µm/min]
Vd	Abrichtrollenumfangsgeschwindigkeit	[m/s]
Vs	Schleifscheibenumfangsgeschwindigkeit beim Schleifen	[m/s]
V _{sd}	Schleifscheibenumfangsgeschwindigkeit beim Abrichten	[m/s]
\overline{v}_{sd}	durchschnittliche Schleifscheibenumfangsge-	[m/s]
	schwindigkeit beim Abrichten	
x	x-Koordinate eines Abrichtdiamanten	[mm]
Xa	Hilfsgröße zur Berechnung des Längsschnittes	[mm]
	der Diamanteingriffsbahn	
у	y-Koordinate eines Abrichtdiamanten	[mm]
Yd	Ordinate der Eingriffsbahn eines Abrichtdiamanten nach	[mm]
	[Schm68]	

Griechische Buchstaben

α	Freiwinkel	[°]
β	Keilwinkel	[°]
γ	Spanwinkel	[°]
ΔI	Versatz am Umfang der Abrichtrolle	[mm]
∆l _{dt}	Längendifferenz des Abrichters	[µm]
Δr _d	Radialverschleiß der Abrichtrolle	[mm]
ΔV_{d1}	Hilfsvolumen zur Berechnung der Volumenanteile	[µm³]
ΔV_{d11}	Hilfsvolumen zur Berechnung zur Berechnung von ΔV_{d1}	[µm³]
ΔV_{d12}	Hilfsvolumen zur Berechnung zur Berechnung von ΔV_{d1}	[µm³]
ΔV_{d2}	Hilfsvolumen zur Berechnung der Volumenanteile	[µm³]
ΔV_{d21}	Hilfsvolumen zur Berechnung zur Berechnung von ΔV_{d2}	[µm³]

ΔV_{d22}	Hilfsvolumen zur Berechnung zur Berechnung von ΔV_{d2}	[µm³]
ΔV_{sd}	Differenz des abgerichteten Schleifscheibenvolumens	[cm ³]
$\Delta\phi_{dd}$	Versatz am Umfang der Abrichtrolle im Bogenmaß	[-]
θ	Hilfsgröße zur Substitution im Bogenmaß	[-]
λ_d	Abrichtdrehzahlverhältnis	[-]
λ_{dt}	Neigungswinkel des Abrichtdiamanten	[°]
λ_{Laser}	Wellenlänge des Laser bei der Raman-Spektroskopie	[nm]
μ_{d}	Reibungskoeffizient der Abrichtrolle	[-]
σ	Standardabweichung	[variabel]
ϕ_{dd}	Winkelkoordinate der Abrichtrollendrehbewegung	[-]
	bezogen auf einen Punkt am Umfang der Abrichtrolle im	
	Bogenmaß	
φs	Winkelkoordinate der Schleifscheibendrehbewegung im	[-]
	Bogenmaß	
ϕ_{sd}	(Polar-)Winkel der Drehbewegung im System	[-]
	Schleifscheibe – Abrichtrolle bezogen auf einen Punkt	
	am Umfang der Abrichtrolle im Bogenmaß	
ϕ_{ss}	Winkelkoordinate der Schleifscheibendrehbewegung	[-]
	bezogen auf den Mittelpunkt der Abrichtrolle im	
	Bogenmaß	
$\phi_{ss,A}$	Winkel der Schleifscheibendrehbewegung beim	[-]
	Austritt des Diamanten im Bogenmaß	
$\phi_{\text{ss,E}}$	Winkel der Schleifscheibendrehbewegung beim	[-]
	Eintritt des Diamanten im Bogenmaß	

Abkürzungen

AE	Körperschall (engl. Acoustic Emission)
AI	Aluminium
Al ₂ O ₃	Aluminium(III)-oxid, eine Modifikation dessen ist Korund
В	Bor
С	Kohlenstoff
Са	Calcium
Ca[Al ₂ Si ₂ O ₈]	Anorthit nach [BotS06]
cBN	kubisch kristallines Bornitrid (engl. cubic Boron Nitride)
CD	kontinuierliches Abrichten (engl. Continuous Dressing)
CH ₄	Methan
Со	Cobalt
Cr	Chrom
СТ	Computertomograph
CVD	Chemische Abscheidung aus der Gasphase (engl. Chemical Vapor
	Deposition)
Cu	Kupfer
DC	Gleichstrom (engl. Direct Current)
DEDD	trocken-funkenerosiv unterstütztes Abrichten (engl. dry electro
	discharge assisted dressing)
DIN	Deutsches Institut für Normung
E-Modul	Elastizitätsmodul
ECCD	elektrochemische Abrichten durch anodische Auflösung der
	Metallbindung (engl. Electro Chemical In-Process Control Dressing)
ECDD	kontakterosives Abrichten (engl. Electro Contact Discharge Dressing)
ECDM	elektrochemisch-funkenerosives Abrichten (engl. Electro Chemical
	Discharge Dressing)
ECM	elektrochemische Bearbeitung (engl. Electro Chemical Machining)
EDM	funkenerosive Bearbeitung (engl. Electro Discharge Machining)
EDX	energiedispersive Röntgenanalyse (engl. Energy Dispersive X-Ray
	Analysis)
EK	Edelkorund
EKw	Edelkorund weiß

XVIII	Abkürzungen
ELID	elektrochemisches Abrichten durch Oxidation der Metallbindung (engl. Electrolytic In-Process Dressing)
EN	Europäische Norm
FE	Finite Elemente
Fe	Eisen
FEPA	europäische Vereinigung der Schleifmittelhersteller (engl. Federation of
	European Producers of Abrasives)
G(-Peak)	Spitzenwert des Raman-Spektrums, der sp ² -gebundenen Kohlenstoff nachweist
H ₂	molekularer Wasserstoff
ISO	Internationale Organisation für Normung (engl. International Organization for Standardization)
К	Kalium
Kα	charakteristischen Linie des Röntgenspektrums
K[AlSi ₃ O ₈]	Orthoklas nach [BotS06]
La	Lanthan
Li	Lithium
Lα	charakteristischen Linie des Röntgenspektrums
Mg	Magnesium
MKD	monokristalliner Diamant
Mn	Mangan
Мо	Molybdän
Na	Natrium
Na[AlSi ₃ O ₈]	Albit nach [BotS06]
Na ₂ O	Dinatriumoxid
Nb	Niob
Nd:YAG	Neodym-dotiertes Yttrium-Aluminium-Granat (für Festkörperlaser)
Ni	Nickel
0	Sauerstoff
Р	Phosphor
PKD	polykristalliner Diamant
RE	Rückstreu-Elektronen
REM	Rasterelektronenmikroskop
S	Schwefel

SE	Sekundärelektronen
SEDD	funkenerosives Abrichten mit Senkelektrode (engl. Sink Electro
	Discharge Dressing)
SG	Sol-Gel (-Korund)
Si	Silicium
SiC	Siliciumcarbid
SiCd	Siliciumcarbid dunkel (schwarz)
SiCg	Siliciumcarbid grün
SiO ₂	Siliciumdioxid, die Bezeichnung umfasst die Quarz-Modifikationen
spc	Steine pro Karat (engl. stones per carat)
Ti	Titan
V	Vanadium
W	Wolfram
WEDD	funkenerosives Abrichten mit Drahtelektrode (engl. wire electro
	discharge dressing)
α -Al ₂ O ₃	Alpha-Aluminium(III)-oxid, Korund
α-SiC	Alpha-Siliciumcarbid (Hochtemperatur-Modifikation)
γ -Al ₂ O ₃	Gamma-Aluminium(III)-oxid, Tonerde