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Abstract

With the emergence of high performance computers and the constant increase of

their computation power and the availability of efficient numerical optimization al-

gorithms, model-based optimizing control schemes receive great attention. The con-

ceptual simplicity of these schemes and their capability to deal with constraints and

handle nonlinear systems as well as the systems with multiple inputs and outputs

make this method attractive in theory and practice.

The focus of this thesis is to study the different aspects of the application of opti-

mizing controller on a continuous polymerization process of acrylic acid in tubular

reactors. This process is described by a system of PDEs comprising 8 − 12 manip-

ulated variables and is characterized by complex behavior, long delays and sharp

evolution of the states. Several numerical methods are used to simulate this process

to figure out the approach with the highest accuracy and the lowest computation

times.

To promote a real-time implementation, a computationally favorable formulation of

an optimizing controller for the continuous polymerization process of acrylic acid is

proposed and its different aspects are studied in several control scenarios.

The availability of state information and their accuracy are critical for the applica-

bility of optimizing controllers. It is difficult to estimate the states from the available

measurements for distributed systems such as the continuous polymerization process.

Therefore different estimation methods are studied and compared in terms of estima-

tion accuracy, tuning effort and computation times to determine the most suitable

method for this process.

The quality of the model used by the optimizing controller influences its performance

substantially. To achieve robustness against the model inaccuracy, the standard Se-

quential Importance Resampling Particle Filter is adapted such that simultaneous

estimation of the states and the parameters of the continuous polymerization pro-

cess is possible. The proposed method can also be used for any process with long

input-output delays.
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Zusammenfassung

Durch die Entwicklung von Hochleistungscomputern und durch den konstanten Anstieg

ihrer Rechenleistung sowie durch die Verfügbarkeit effizienter numerischer Opti-

mierungsalgorithmen wurde der modellbasierten ökonomisch-optimierenden Regelung

viel Aufmerksamkeit geschenkt. Die konzeptionelle Einfachheit dieser Methode und

ihre Vorteile durch die Handhabung nichtlinearer Systeme mit mehreren Stell- und

Regelgrößen sowie die Realisierung von Beschränkungen, macht diese Methode aus

theoretischen und praktischen Gesichtspunkten interessant.

Der Fokus der vorliegenden Dissertation wurde auf die Betrachtung verschiedener As-

pekte der Anwendung von ökonomisch optimierender Regelung an einem kontinuier-

lichen Polymerisationsprozess zur Herstellung von Polyacrylsäure gelegt. Dieser

Prozess wird in einem Rohrreaktor durchgeführt und kann mit Hilfe von 8-12 Stellgrößen

geregelt werden. Das Systemverhalten wird mit Hilfe von PDEs abgebildet und be-

sitzt stark nichtlineares dynamisches Verhalten, bei dem lange Verzugszeiten und

scharfe Fronten sowie Konzentration-Peaks auftreten. Verschiedene Alternativen

werden für die numerische Simulation angewendet um die Methode, die am besten

geeignet ist, zu identifizieren.

Um eine Echtzeit-Implementierung zu fördern, wird eine vorteilhafte mathematis-

che Beschreibung des optimierenden Reglers für die kontinuierlichen Herstellung

von Polyacrylsäure vorgeschlagen und ihre verschiedenen Aspekte werden durch ver-

schiedene Regelungszenarien studiert.

Die Verfügbarkeit der Information über Systemzustände sowie deren Genauigkeit

sind kritisch für die Anwendung der optimierenden Regelung. Der Zustandschätzung

aus den vorhanden Messungen ist in verteilten Systemen wie zum Beispiel die kon-

tinuierliche Herstellung von Polyacrylsäure schwierig. Daher werden Methoden zur

Zustandsschätzung im Rahmen der Arbeit untersucht und hinsichtlich der Schätz-

genauigkeit, des Einstellaufwands und der Berechnungszeiten verglichen, um die

bestmögliche Methode auszuwählen und für den vorliegenden Prozess zu nutzen.

Die Qualität des Prozessmodells, das für den optimierenden Regler genutzt wird,

hat einen wichtigen Einfluss auf Performance des Reglers. Um robust gegenüber

Modellunsicherheit zu sein, wurde der Standard Sequential Importance Resampling

Partikelfilter als Methode zur Zustandsschätzung so angepasst, dass gleichzeitig Sys-

temzustände und -parameter geschätzt werden können. Somit kann der verwendete

Zustandsschätzer auch auf andere Prozesse, die durch lange Verzögerungszeiten zwis-

chen Stell- und Regelgrößen charakterisiert sind, übertragen werden.
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