Entwicklungsmethoden für luftgedämpfte Fahrzeuge

Willy Armand Fongue

Band 22

Forschungsberichte zur Fluidsystemtechnik

Herausgegeben von Prof. Dr.-Ing. Peter F. Pelz

Entwicklungsmethoden für luftgedämpfte Fahrzeuge

Vom Fachbereich Maschinenbau an der Technische Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

DISSERTATION

vorgelegt von

Willy Armand Fongue, M.Sc.

aus Ngoumou (Kamerun)

Berichterstatter: Prof. Dr.-Ing. Peter F. Pelz

Mitberichterstatter: Prof. Dr.-Ing. Ralph Mayer

Tag der Einreichung: 13.11.2018
Tag der mündlichen Prüfung: 16.01.2019

Darmstadt 2018

Forschungsberichte zur Fluidsystemtechnik

Band 22

Willy Armand Fongue

Entwicklungsmethoden für luftgedämpfte Fahrzeuge

D 17 (Diss. TU Darmstadt)

Shaker Verlag Düren 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2019

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6898-6 ISSN 2194-9565

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort des Herausgebers

Die deutsche Automobilindustrie dominiert bei Oberklassefahrzeugen den Weltmarkt. Gründe hierfür sind technische Funktionen, Design und nicht zuletzt Markenimage. Für Sport Utility Vehicles und Limousinen haben sich ab 1998 (Einführung der Luftfederung in der Daimler S-Klasse) Luftfedern gegenüber anderen Federungskonzepten durchgesetzt, da hier das Verhältnis von Kundenwahrnehmung zu Systemkosten im Vergleich zu anderen Systemen vorteilhaft ist.

In jüngerer Zeit wird von Fahrzeugherstellern (vgl. Porsche Panamera) die konstruktiv mögliche Steifigkeitsadaption von Luftfedersystemen genutzt, um gezielt auf die Fahrdynamik einzuwirken. Das dabei erreichbare Steifigkeitsverhältnis durch Ventilschaltung ist geometrisch vorgegeben und liegt bei etwa 2.

Der Abrollkomfort eines Fahrzeuges wird neben dem Reifen im Wesentlichen durch die Coulombsche Reibung der Achse (d.h. Topologie und Achsbauteile) bestimmt. Konstruktiv bedingt bieten hinsichtlich der Coulombschen Reibung Luftfederdämpfer einen signifikanten Vorteil gegenüber hydraulischen Dämpfern. Die Erfahrungen mit Prototypenfahrzeugen haben gezeigt, dass der Abrollkomfort von luftgedämpften Fahrzeugen unübertroffen ist. Um dies zu quantifizieren, ist auf das Abbildung 5-13 in der vorliegenden Arbeit verwiesen. Die Coulombsche Reibkraft eines Seriendämpfers liegt bei ca. 20 N (einfache Amplitude). Dies ist durch die beiden dynamischen Dichtungen, nämlich Kolbenund Stangendichtung des Dämpfers verursacht. Die dynamischen Dichtungen sind beim Luftfederdämpfer durch Rollbälge ersetzt. So werden Coulombsche Reibkräfte (=Walkkräfte) von nur ca. 2 N erreicht (vgl. auch Abbildung 3-10).

Andere positive physikalische Eigenschaften eines Luftfederdämpfers werden zwar oft genannt (Beladungsinvarianz) sind aber für Oberklassefahrzeuge nicht relevant. Nachteilig bei Luftfederdämpfern sind der große Bauraum und die schwierige Auslegung. Der letztgenannte Punkt macht eine verlässliche, d.h. physikalische Modellbildung des Bauteils und Systems und genaue numerisch bzw. analytische Vorauslegung unerlässlich.

Oben wurde die Steifigkeitsspreizung bei einer adaptiven Luftfeder wie die des Porsche Panamera angesprochen. Bemerkenswert ist, dass das erreichbare Steifigkeitsverhältnis eines Luftfederdämpfers mit etwa 20 um eine Größenordnung über dem von konventionellen luftgefederten Systemen liegt.

Ergebnisse und wissenschaftlicher Fortschritt

Die Anmerkungen führen unmittelbar zur eingereichten Dissertationsschrift von Herrn Willy Fongue:

Zu Beginn der Forschungsarbeit von Herrn Fongue stand die Frage, (i) ob sich das hohe Steifigkeitsverhältnis von adaptiven Luftfederdämpfern nutzen lässt, um hydraulische Dämpfer zu ersetzen.

Unmittelbar anschließend stand die Frage, (ii) wie die dissipierte Energie der Luftströmung in die Umgebung abgeleitet werden kann, ohne dass kritische Beharrungstemperaturen im eingeschwungenen Zustand erreicht werden.

Letztlich stand die Frage im Raum, (iii) wie sich ein Luftfederdämpfer in einer sogenannten aufgelösten Bauweise darstellen lässt.

Die Antwort auf die drei Fragen sollen hier kurz gegeben werden:

(i) anhand von Kraft-Geschwindigkeitsdiagrammen hat Herr Fongue gezeigt, dass die gleiche Dissipationsleistung, verglichen mit dem Serienbauteil, erreicht werden kann; (ii) die dissipierte Energie kann durch ein außenliegendes Ventil mittels Wärmeleitung und einem Wärmetauscher an die Umgebung abgegeben werden; (iii) eine aufgelöste Bauweise ist auch bei einem Luftfederdämpfer (LFD) möglich, wenn man gedanklich von einer Zugund einer Druckluftfeder ausgeht, die über eine Drosselleitung kommunizieren. Die Kinematik und Anordnung in der Achse muss derart sein, dass bei Einfederung eine Feder zusammengedrückt wird wohingegen die zweite Feder expandiert.

Darmstadt, den 03.01.2019

Peter F. Pelz

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als Wissenschaftlicher Mitarbeiter zwischen Juli 2010 und Juni 2011 am Institut Fluidsystemtechnik der Technische Universität Darmstadt und als Doktorand zwischen Juli 2011 und Juni 2015 im Forschungs- und Entwicklungszentrum der Daimler AG bei Mercedes-Benz im MTC Sindelfingen.

An erster Stelle geht mein Dank an meinen Doktorvater Herrn Prof. Dr.-Ing. Peter F. Pelz, Institutsleiter Fluidsystemtechnik der Technische Universität Darmstadt, der die Betreuung dieser Arbeit im Rahmen einer Kooperation zwischen der Abteilung "Vorentwicklung Fahrwerk" der Daimler AG und seinem Institut möglich gemacht hat. Er trug insbesondere durch die Aufgabenstellung, aber auch durch konstruktive Anregungen, Vorschläge und Hilfestellungen maßgeblich zu einer erfolgreichen Arbeitsweise bei.

Herrn Prof. Dr.-Ing Ralph Mayer danke ich für seine bereitwillige Übernahme des Koreferats. Die zahlreichen Gespräche und die stets hilfsbereit gegebenen Hinweise haben entscheidend zu einer positiven Motivation bei der Anfertigung der Dissertation geführt.

Ein ganz herzlicher Dank geht an Herrn Hans Joachim Kieserling für das mir entgegengebrachtes Vertrauen während meiner Tätigkeit unter seiner Leitung. Seine Unterstützung und insbesondere sein Enthusiasmus für das Thema haben mein Engagement immer vorangetrieben.

Herrn Dr. Michael Kleczka, Abteilungsleiter "Vorentwicklung Fahrwerk", gebührt mein Dank für seine Unterstützung, insbesondere für die Bereitstellung der Mittel zur Realisation dieser Arbeit.

Bei den Kollegen Frau Dr. Veronika Effinger, Herrn Dr. Timo Gaugele, Herrn Christian Mosler, Herrn Christoph Schade, Herrn Philipp Hedrich, Herrn Jochen Elser und Herrn Karl Max Noupa bedanke ich mich für die gute Zusammenarbeit, die freundliche Atmosphäre und zahllosen fachlichen und nichtfachlichen Diskussionen.

Mein außerordentlicher Dank gilt allen Studenten, die mich mit ihren Bachelor-, Masterarbeiten sowie Industriepraktika oder als Hilfswissenschaftler unterstützt haben sowie den mechanischen Werkstätten der Abteilung "Federung und Dämpfung" der Daimler AG und des Instituts Fluidsystemtechnik.

Meinen ganz besonderen Dank möchte ich an meiner Familie aussprechen. Hier möchte ich meinen Geschwistern Hilaire, Thierry, Patrick, Jeanne, Pamela und Junior für den familiären Rückhalt und für die langjährige Unterstützung während des Studiums und der Promotion danken. Meinen Eltern danke ich, dass sie mir diese hervorragende Ausbildung in Deutschland ermöglicht haben. Meiner Ehefrau Nelly Vanessa danke ich, dass sie mich während dieser Arbeit mit Geduld, Liebe und Verständnis begleitet hat.

Hiermit versichere ich, die vorliegende Doktorarbeit unter der Betreuung von Prof. Dr.-Ing. Peter F. Pelz nur mit den angegebenen Hilfsmitteln selbständig angefertigt zu haben.

Altdorf, den 13.11.2018 Willy A. Fongue

Für

Elise, Joachim & Nelly Vanessa

Es erscheint immer unmöglich, bis jemand es getan hat.

Nelson Mandela, ehemaliger südafrikanischer Präsident

Inhaltsverzeichnis

V	orwo	ort des Herausgebers	1
V	orwo	ort	III
In	halt	sverzeichnis	IX
A	bkür	zungen	XII
F	orme	elzeichen und Indizes	XIII
1		leitung	
	1.1	Motivation	2
	1.2	Zielsetzung und Aufgabenstellung	5
	1.3	Aufbau der Arbeit	6
2	Ver	tikaldynamik: Federung & Dämpfung	7
		Definition wichtiger Begriffe	
	2.2	Funktionen eines Fahrwerks	9
	2.3	Federung & Dämpfung	10
		2.3.1 Aufgaben und Bauarten von Federn	10
		2.3.2 Aufgaben und Bauarten von Schwingungsdämpfer	11
		2.3.3 Luftfedern	13
		2.3.4 Hydropneumatische Feder	
	2.4	Charakteristische Kenngrößen und Kennlinien	21
		2.4.1 Komponentenebene	21
		2.4.2 Fahrzeugebene	24
	2.5	Noise Vibration and Harshness (NVH)	31
		2.5.1 Fahrbahnanregung und -induzierte Fahrzeugschwingungen	
		2.5.2 Menschen-Empfindung und -Wahrnehmung von Schwingungseinw	rirken 38
3		tfederdämpfer: Stand der Technik	
	3.1	Historie	41
	3.2	Funktion und Eigenschaften	48
		3.2.1 Frequenzabhängiges Übertragungsverhalten	
		3.2.2 Beladungsabhängiges Dämpfungsverhalten	52
		3.2.3 Beladungsunabhängiges Schwingungsverhalten	
		3.2.4 Reibung und komfortoptimierte Bauformen	53
		3.2.5 Balgharshness und Akustikverhalten	
		3.2.6 Fahrzeugintegration und Funktionspotentialvergleich	
	3.3	Physikalische Modellbildung	
		3.3.1 Thermodynamische Zustände in den Volumenkammern	60

		3.3.2 Strömungsmechanik im Ventil	62
		3.3.3 Tragflächen	68
		3.3.4 Verdrängerflächen	71
	3.4	LFD-Modell in LMS-AMESim	72
	3.5	Sensitivitätsanalyse	74
		3.5.1 Variation der Anregungsamplitude	75
		3.5.2 Variation des Ruhedrucks	76
		3.5.3 Variation der Ruhetemperatur	77
		3.5.4 Variation der Drosselquerschnittsfläche	78
		3.5.5 Druckbegrenzungsventil	79
4	Koı	nzepte und Auslegung	83
		Anforderungen an die neuen LFD-Generationen	
		4.1.1 Günstige Bauformen	
		4.1.2 Verbesserung des Fahrkomforts	
		4.1.3 Beherrschung des Wärmehaushalts	86
	4.2	Konzepte	
		4.2.1 2-Kammer-2-Bälge-LFD mit Gleichstromrichter	
		4.2.2 2-Kammer-3-Bälge-LFD mit außenliegendem Ventil	
		4.2.3 Upside-Down LFD	
		4.2.4 LFD-Aufgelöste Bauweise	
	4.3	Auslegungsmethodik	
		4.3.1 Bauraumanalyse	
		4.3.2 Eingangsinformationen	
		4.3.3 Berechnungsschema	
		4.3.4 Geometrische Vorauslegung: Dimensionierung	
		4.3.5 Funktionale Überprüfung	
5	Luf	ftfederdämpfer der zweiten Generation	119
		Auslegung und Dimensionierung	
		5.1.1 Randbedingungen	
		5.1.2 Ergebnisse	
		5.1.3 Parametervariation und Ventilauslegung	
	5.2	Konstruktive Umsetzung	
		Messtechnische Bewertung des Fahrkomfort und der Fahrsicherheit	
		5.3.1 Prüfstand linear	
		5.3.2 Einbausituation Achse	
	5.4	Temperaturentwicklung und Wärmeabfuhr	
		5.4.1 Wärmeabfuhrpotential	
		5.4.2 Temperaturbewertung	
6	Faz	rit	169
		Zusammenfassung	

	6.2	Ausblick: Wankaktive Luftfeder	170
		6.2.1 Auslegung und Dimensionierung	170
		6.2.2 Konstruktiven Umsetzung	177
7	Anl	nang	179
	7.1	Lineares Verhalten von LFD	179
		7.1.1 Herleitung der Gesamtübertragungsfunktion	179
		7.1.2 Herleitung der maximalen Dämpfarbeit, der Verlustwinkel bei maxim	aler
		Dämpfarbeit und der maximalen Verlustwinkel	183
		7.1.3 Frequenz bei maximaler(m) Dämpfarbeit und Verlustwinkel	185
		7.1.4 Herleitung des logarithmischen Dekrements	186
	7.2	Ausdruck der Trag- und Verdrängerflächen bei verschiedenen LFD-Typen	187
		7.2.1 2-Kammer-1-Balg-LFD	187
		7.2.2 2-Kammer-3-Bälge-LFD	189
		7.2.3 3-Kammer-3-Bälge-LFD	191
	7.3	Herleitung der Aufbau- und Wankfedersteifigkeit	193
		7.3.1 Aufbaufedersteifigkeit am Rad und an der Komponente	
		7.3.2 Wankfedersteifigkeit	197
	7.4	LFD-Auslegungsschema	201
		7.4.1 LFD _{AB}	201
		7.4.2 2K2B-LFD	202
	7.5	LFD-Modell in SIMULINK	203
Li	itera	turverzeichnis	207
A	bbild	lungsverzeichnis	211
Ta	abell	enverzeichnis	217
Betreute Studentische Arbeiten und Studenten21			219
L	eben	slauf	221

Abkürzungen

Abkürzung Beschreibung

DBV Druckbegrenzungsventil

FF Fahrfertig

FKE Federung-Kinematik-Elastokinematik GNSS Globalen Navigationssatellitensystem

INS Initialen Navigationssystem

ISO International Organisation for Standardisation
 K0 Konstruktionslage/ Konstruktionsgesamtgewicht

LF Luftfeder

LFD Luftfederdämpfer

 LFD_{1Gen} Luftfederdämpfer der ersten Generation LFD_{2Gen} Luftfederdämpfer der zweiten Generation LFD_{AB} Luftfederdämpfer Aufgelöste Bauweise

NVH Noise Vibration and Harhness

RV Rückschlagventil TL Teilbeladung

VDA Verband der Automobilindustrie VDI Verein für deutsche Ingenieur

VL Vollbeladung

WAL Wank-aktiv-Luftfeder

WV Wechselventil

ZGG Zulässige Gesamtgewicht 2K2B 2-Kammer-2-Bälge 2K3B 2-Kammer-3-Bälge 3K3B 3-Kammer-3-Bälge

FB₂₂₂ Federbein der Baureihe 222

Formelzeichen und Indizes

Symbolverzeichnis

Die Symbole der ersten Spalte werden in der zweiten Spalte beschrieben. Die dritte Spalte, wenn vorhanden, gibt die Dimension als Monom mit den Basisgrößen Länge (L), Masse (M) Zeit (T), Temperatur (Θ) , und Stoffmenge (N) an.

Lateinische Buchstaben:

Symbol	Beschreibung	Dimension
\overline{A}	Fläche, Verdrängerfläche	L^2
A_T	Tragfläche	L^2
A_b	Drosselquerschnittfläche	L^2
a	Temperaturleitfähigkeit	L^2T^{-1}
b	Drückverhältnis	-
c	Steifigkeit	MT ⁻²
c_p	Spezifische Wärmekapazität	$L^2 T^{-2} \Theta^{-1}$
c_{γ}	Adiabate Steifigkeit	MT ⁻²
c_0	Isotherme Steifigkeit	MT ⁻²
d	Dämpfungskonstante	MT^{-1}
D	Durchmesser	L
D	Dämpfungsgrad	-
f	Zeitfrequenz	T-1
F	Kraft	MLT ⁻²
g	Erdbeschleunigung	LT ⁻²
h	Hohe des Balges am Segment	L
h	Enthalpie	L^2 MT ⁻²
i	Achsübersetzung	-
k	Flächennachgiebigkeit	$L^3M^{-1}T^2$
k	Wärmedurchgangskoeffizient	$MT^{-3}\Theta^{-1}$
K	Wahrnehmungsstärke	-
1	Länge, Abstand	L
1	Wegfrequenz	L^{-1}
L	Wellenlänge	L
m	Masse	M
\dot{m}	Massenstrom	MT^{-1}
n	Polytropenexponent	-
p	Druck	ML ⁻¹ T ⁻²
P	Leistung	$ML^{2}T^{-3}$
Q	Wärmestrom	L ² MT ⁻³
r D	Radius Spanificaka Caskanstanta	L L ² T ⁻²
R	Spezifische Gaskonstante	L
S	Federweg	L

Symbol	Beschreibung	Dimension
S	Federspur	L
t	Zeit	T
T	Temperatur	Θ
T	Periode, Zeitspanne	T
и	Strömungsgeschwindigkeit	LT ⁻¹
V	Volumen	L^3
v	Geschwindigkeit	LT ⁻¹
w	Welligkeit	-
Z	Axiale Anregung	L
â	Axiale Anregungsamplitude	L

Griechische Buchstaben

Symbol	Beschreibung	Dimension
α	Wärmeübergangskoeffizient	$M \cdot T^{-3} \cdot \Theta^{-1}$
β	Konturierung	-
γ	Isentropenexponent	-
γ	Wärmeleitfähigkeit	$M\!\cdot\! L\!\cdot\! T^{3}\!\cdot\! \Theta^{1}$
Δ	Abklingkonstant	-
ζ	Höheänderung des Rollbalges	L
η	Dynamische Viskosität	$M L^{-1}T^{-1}$
θ	Eingangsparameter	-
λ	Eigenwerte	T-1
ν	Geschwindigkeit	LT ⁻¹
ν	Kinematische Viskosität	$L^2 T^{-1}$
ρ	Dichte	ML^3
σ	Effektivwert der Radlastschwankung	
υ	Fahrzeuggeschwindigkeit	LT ⁻¹
φ	Drehwinkel, Verlustwinkel, Wankwinkel	-
ϕ	Phasenwinkel	-
Φ	Spektrale Leistungsdichte (Leistungsdichtespektrum)	L^3
ω	Zeitkreisfrequenz	T-1
Ω	Wegkreisfrequenz	L-1
Λ	Logarithmisches Dekrement	-
ψ	Ausflussfunktion	-
Ψ	Zielfunktion	-

Index Beschreibung

0	Initial, Konstruktionslage,
1	Erste Kammer, Zugkammer
2	Zweite Kammer, Druckkammer
1Gen	Erste Generation

2Gen Zweite Generation

A Aufbau
A Aussen
Ab Abwärts
Auf Aufwärts
C Feder
D Dämpfer
D Druck

dn Downstream

dbv Druckbegrenzungsventil

DynDynamikEffEffektivwert

I Innen

h Homogene, Hinten

K Kolben

max Maximum

min Minimum

Neb Nebenfederrate

p Partikular

R Rad

 $egin{array}{lll} stab & Stabilisator \ SL & Stürzlager \ u & Umgebung \ up & Upstream \ v & Ventil, Vorne \ & & & & & & & \\ \hline \end{array}$

w Wand

z Axial-/ Vertikalrichtung

Z Zug