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Abstract

Given the growing awareness of machine learning outside of computer science in both
academia and business in recent years, I examine two corporate financing forecasting
problems and show how machine learning models compare to established literature mod-
els. The forecasting of future corporate bankruptcies serves vicariously as a classification
problem and the forecasting of future corporate earnings as a regression problem, which
are both traditionally approached with econometric techniques such as logistic and linear
regression.

I forecast bankruptcies and earnings using a diverse set of machine learning models—
ranging from subset selection models to highly flexible Boosting models—and combine
these models to stacked ensembles. Ensemble learning can potentially outstrip the per-
formance of individual machine learning models and to date has not been investigated
for bankruptcy and earnings forecasts. Besides the focus on high performing models, 1
create highly interpretable logistic and linear regression models with the most predictive
variables assessed over all machine learning models.

For both forecast problems, stacked ensembles show in their optimal calibration the
best forecast performance, exceeding established literature models by at least 5% in terms
of standard evaluation criteria. Individual machine learning models achieve at least an
improvement of 4% and my self-generated regression models at least 1%.

Despite the already capable performance of established literature models in the field
of corporate finance already, the utilization of machine learning successfully enriches the
way researchers can transform data into forecasts. The engineering of new data with
machine learning methods has the potential to be an even more influential approach for

future researchers.
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